目录
前言
熟悉线程池的话,对 FutureTask 一定不会陌生,当我们提交任务时会拿到一个 Future 对象,它代表一个异步任务,而 FutureTask 则是它的实现类,示例如下:
ExecutorService executorService = Executors.newFixedThreadPool(1);
Future<?> future = executorService.submit(() -> {
System.out.println("do something");
});
Object res = future.get();
Future 位于 java.util.concurrent 包下,是异步任务的顶层接口
public interface Future<V> {
boolean cancel(boolean mayInterruptIfRunning);
boolean isCancelled();
boolean isDone();
V get() throws InterruptedException, ExecutionException;
V get(long timeout, TimeUnit unit)
throws InterruptedException, ExecutionException, TimeoutException;
}
实现
在深入 FutureTask 原理之前,不妨先思考一下,如果让你来实现一个 FutureTask,你会怎么实现?
先不考虑线程安全,可以想到需要这些成员变量
- Callable 变量,用于接收任务并做装饰,提交给线程执行
- 线程变量,用于记录当前等待任务的线程,当任务执行完后唤醒等待线程
- 执行状态,用于当前任务的执行状态记录
那就不难写出一个自己的实现类
public class MyFutureTask<V> implements Runnable, Future<V> {
/**
* 执行任务
*/
private final Callable<V> callable;
/**
* 执行状态
*/
private int state;
/**
* 执行结果
*/
private V outcome;
/**
* 当前等待线程
*/
private Thread runner;
private static final int NEW = 0;
private static final int NORMAL = 1;
private static final int EXCEPTIONAL = 2;
private static final int CANCELLED = 3;
public MyFutureTask(Callable<V> callable) {
this.callable = callable;
this.state = NEW;
}
@Override
public boolean cancel(boolean mayInterruptIfRunning) {
if (state > NEW) {
return false;
}
if (mayInterruptIfRunning) {
runner.interrupt();
state = CANCELLED;
}
return true;
}
@Override
public boolean isCancelled() {
return state == CANCELLED;
}
@Override
public boolean isDone() {
return state != NEW;
}
@Override
public V get() {
if (state == NEW) {
for (; ; ) {
if (state > NEW) break;
runner = Thread.currentThread();
LockSupport.park();
}
}
if (state == NORMAL) {
return outcome;
} else {
throw new RuntimeException("exception!");
}
}
@Override
public V get(long timeout, TimeUnit unit) throws InterruptedException, ExecutionException, TimeoutException {
final long deadline = System.nanoTime() + timeout;
if (state == NEW) {
for (; ; ) {
if (state > NEW) break;
runner = Thread.currentThread();
long nanos = deadline - System.nanoTime();
LockSupport.parkNanos(nanos);
}
}
if (state == NORMAL) {
return outcome;
} else {
throw new RuntimeException("exception!");
}
}
@Override
public void run() {
if (state != NEW) return;
try {
outcome = callable.call();
state = NORMAL;
} catch (Exception e) {
e.printStackTrace();
state = EXCEPTIONAL;
} finally {
LockSupport.unpark(runner);
}
}
}
原理
但是仔细想一下,这个 FutureTask 在我们使用的场景肯定是需要提交给不同线程的,也就是说必须满足线程安全
- FutureTask#get 多线程场景,必须有一个类似队列的设计,任务完成后把所有等待线程逐个唤醒,同样也存在数据竞争
- FutureTask#run 多线程场景,状态的修改存在数据竞争
- 还要支持可中断的等待
可见一旦引入多线程场景,事情就变得困难了,我们直接看看 FutureTask 源码是怎么做的
成员变量
private volatile int state;
private static final int NEW = 0;
private static final int COMPLETING = 1;
private static final int NORMAL = 2;
private static final int EXCEPTIONAL = 3;
private static final int CANCELLED = 4;
private static final int INTERRUPTING = 5;
private static final int INTERRUPTED = 6;
/** The underlying callable; nulled out after running */
private Callable<V> callable;
/** The result to return or exception to throw from get() */
private Object outcome; // non-volatile, protected by state reads/writes
/** The thread running the callable; CASed during run() */
private volatile Thread runner;
/** Treiber stack of waiting threads */
private volatile WaitNode waiters;
static final class WaitNode {
volatile Thread thread;
volatile WaitNode next;
WaitNode() { thread = Thread.currentThread(); }
}
先看看成员变量,多线程场景存在内存可见性问题的成员变量都用了 volatile 修饰。此外,定义了一个链表的结构,每个数据节点是等待的线程,需要被唤醒,且被 volatile 修饰
CAS
// Unsafe mechanics
private static final sun.misc.Unsafe UNSAFE;
private static final long stateOffset;
private static final long runnerOffset;
private static final long waitersOffset;
static {
try {
UNSAFE = sun.misc.Unsafe.getUnsafe();
Class<?> k = FutureTask.class;
stateOffset = UNSAFE.objectFieldOffset
(k.getDeclaredField("state"));
runnerOffset = UNSAFE.objectFieldOffset
(k.getDeclaredField("runner"));
waitersOffset = UNSAFE.objectFieldOffset
(k.getDeclaredField("waiters"));
} catch (Exception e) {
throw new Error(e);
}
}
在多线程场景,任务状态的设置、当前等待线程的设置、等待线程在链表中的设置这些都存在数据竞争,而这些场景是非常符合 CAS 的场景,比如多个线程设置任务状态,只能有一个成功,其他都会失败,在这个场景其他的线程都没必要阻塞,设置失败就是失败了
为了实现 CAS,它在这里引入了 Unsafe 类,是 Java 的魔法类之一,虽然我们平时写代码很少直接用它,但其实都间接地用到了它,比如用 Atomic 原子类
FutureTask#run
FutureTask#run 方法是由线程池中的线程执行
public void run() {
if (state != NEW ||
!UNSAFE.compareAndSwapObject(this, runnerOffset,
null, Thread.currentThread()))
return;
try {
Callable<V> c = callable;
if (c != null && state == NEW) {
V result;
boolean ran;
try {
result = c.call();
ran = true;
} catch (Throwable ex) {
result = null;
ran = false;
setException(ex);
}
if (ran)
set(result);
}
} finally {
// runner must be non-null until state is settled to
// prevent concurrent calls to run()
runner = null;
// state must be re-read after nulling runner to prevent
// leaked interrupts
int s = state;
if (s >= INTERRUPTING)
handlePossibleCancellationInterrupt(s);
}
}
这里我们逐行分析一下
- 如果执行 run 方法时,看到的 state 状态不是 NEW,或者当前线程 CAS 失败,直接返回。注意这里 CAS 的 expected 是 null,也就是说成员变量 runner 仅会被第一个 CAS 成功的线程赋值成功
- 对 callable 入参判空、再次判断 state 状态是 NEW
- 执行 callable 任务,对异常和正常两种情况做处理
- 异常和正常两种情况分别会通过 CAS 把状态设置为 EXCEPTIONAL 和 NORMAL
- 最终都会走到 finishCompletion 方法
private void finishCompletion() {
// assert state > COMPLETING;
for (WaitNode q; (q = waiters) != null;) {
// 每次取到下一个waitNode,就通过CAS把该值赋null
if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) {
for (;;) {
Thread t = q.thread;
if (t != null) {
q.thread = null;
// 唤醒该线程
LockSupport.unpark(t);
}
WaitNode next = q.next;
if (next == null)
break;
q.next = null; // unlink to help gc
q = next;
}
break;
}
}
done();
callable = null; // to reduce footprint
}
finishCompletion 方法有几个细节的地方
- q.thread = null、q.next = null、callable = null 都是帮助 GC 回收
- done 是钩子函数,由子类实现,默认是空实现
FutureTask#get
FutureTask#get 方法由外部提交任务的线程调用,同样做了并发和响应中断的设计,它支持可超时和无限等待两种方式,内部实现都是 awaitDone 方法
private int awaitDone(boolean timed, long nanos)
throws InterruptedException {
final long deadline = timed ? System.nanoTime() + nanos : 0L;
WaitNode q = null;
boolean queued = false;
for (;;) {
// 响应中断
if (Thread.interrupted()) {
removeWaiter(q);
throw new InterruptedException();
}
int s = state;
// 任务已完成,返回最终的任务状态
if (s > COMPLETING) {
if (q != null)
q.thread = null;
return s;
}
// 边界情况,直接让出CPU,等待下次循环
else if (s == COMPLETING) // cannot time out yet
Thread.yield();
// waitNode初始化
else if (q == null)
q = new WaitNode();
// 一直尝试CAS设置节点头
else if (!queued)
queued = UNSAFE.compareAndSwapObject(this, waitersOffset,
q.next = waiters, q);
// 走到这里说明任务还在进行中,进入休眠,等待被唤醒
else if (timed) {
nanos = deadline - System.nanoTime();
if (nanos <= 0L) {
removeWaiter(q);
return state;
}
// 休眠+超时
LockSupport.parkNanos(this, nanos);
}
else
// 休眠
LockSupport.park(this);
}
}
FutureTask#cancel
FutureTask#cancel 是由外部提交任务的线程调用,取消当前的任务
public boolean cancel(boolean mayInterruptIfRunning) {
// 如果任务状态不是NEW或者CAS失败,返回失败
if (!(state == NEW &&
UNSAFE.compareAndSwapInt(this, stateOffset, NEW,
mayInterruptIfRunning ? INTERRUPTING : CANCELLED)))
return false;
try { // in case call to interrupt throws exception
// 如果入参为true,直接中断执行任务的线程
if (mayInterruptIfRunning) {
try {
Thread t = runner;
if (t != null)
t.interrupt();
} finally { // final state
UNSAFE.putOrderedInt(this, stateOffset, INTERRUPTED);
}
}
} finally {
// 相当于run执行完成后的调用,唤醒当前get的线程
finishCompletion();
}
return true;
}