Bessie, always wishing to optimize her life, has realized that she really enjoys visiting F (1 <= F <= P) favorite pastures F_i of the P (1 <= P <= 500; 1 <= F_i <= P) total pastures (conveniently
numbered 1..P) that compose Farmer John's holdings.
Bessie knows that she can navigate the C (1 <= C <= 8,000) bidirectional cowpaths (conveniently numbered 1..C) that connect various pastures to travel to any pasture on the entire farm. Associated with each path P_i is a time T_i (1 <= T_i <= 892) to traverse that path (in either direction) and two path endpoints a_i and b_i (1 <= a_i <= P; 1 <= b_i <= P).
Bessie wants to find the number of the best pasture to sleep in so that when she awakes, the average time to travel to any of her F favorite pastures is minimized.
By way of example, consider a farm laid out as the map below shows, where *'d pasture numbers are favorites. The bracketed numbers are times to traverse the cowpaths.
1*--[4]--2--[2]--3
| |
[3] [4]
| |
4--[3]--5--[1]---6---[6]---7--[7]--8*
| | | |
[3] [2] [1] [3]
| | | |
13* 9--[3]--10*--[1]--11*--[3]--12*
The following table shows distances for potential 'best place' of pastures 4, 5, 6, 7, 9, 10, 11, and 12:
* * * * * * Favorites * * * * * *
Potential Pasture Pasture Pasture Pasture Pasture Pasture Average
Best Pasture 1 8 10 11 12 13 Distance
------------ -- -- -- -- -- -- -----------
4 7 16 5 6 9 3 46/6 = 7.67
5 10 13 2 3 6 6 40/6 = 6.67
6 11 12 1 2 5 7 38/6 = 6.33
7 16 7 4 3 6 12 48/6 = 8.00
9 12 14 3 4 7 8 48/6 = 8.00
10 12 11 0 1 4 8 36/6 = 6.00 ** BEST
11 13 10 1 0 3 9 36/6 = 6.00
12 16 13 4 3 0 12 48/6 = 8.00
Thus, presuming these choices were the best ones (a program would have to check all of them somehow), the best place to sleep is pasture 10.
约翰拥有P(1<=P<=500)个牧场.贝茜特别喜欢其中的F个.所有的牧场 由C(1 < C<=8000)条双向路连接,第i路连接着ai,bi,需要Ti(1<=Ti< 892)单 位时间来通过.
作为一只总想优化自己生活方式的奶牛,贝茜喜欢自己某一天醒来,到达所有那F个她喜欢的 牧场的平均需时最小.那她前一天应该睡在哪个牧场呢?请帮助贝茜找到这个最佳牧场.
此可见,牧场10到所有贝茜喜欢的牧场的平均距离最小,为最佳牧场.
输入格式
* Line 1: Three space-separated integers: P, F, and C
* Lines 2..F+1: Line i+2 contains a single integer: F_i
* Lines F+2..C+F+1: Line i+F+1 describes cowpath i with three
space-separated integers: a_i, b_i, and T_i
输出格式
* Line 1: A single line with a single integer that is the best pasture in which to sleep. If more than one pasture is best, choose the smallest one.
输入输出样例
输入 #1复制
13 6 15 11 13 10 12 8 1 2 4 3 7 11 3 10 11 1 4 13 3 9 10 3 2 3 2 3 5 4 5 9 2 6 7 6 5 6 1 1 2 4 4 5 3 11 12 3 6 10 1 7 8 7
输出 #1复制
10
#include<bits/stdc++.h>
using namespace std;
int a[510][510],b[510],n,f,m,inf=1e9;
int main(){
cin>>n>>f>>m;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++){
if(i==j)
a[i][j]=0;
else
a[i][j]=inf;
}
for(int i=0;i<f;i++)
cin>>b[i];
for(int i=0;i<m;i++){
int x,y,m;
cin>>x>>y>>m;
a[x][y]=m;
a[y][x]=m;
}
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(a[i][j]>a[i][k]+a[k][j])
a[i][j]=a[i][k]+a[k][j];
int ans,minn=inf,sum;
for(int i=1;i<=n;i++){
sum=0;
for(int j=0;j<f;j++)
sum+=a[i][b[j]];
if(sum<minn){
minn=sum;
ans=i;
}
}
cout<<ans<<endl;
return 0;
}
#include<iostream>
using namespace std;
int a[110][110],n,m,inf=1e9;
int main(){
while(~scanf("%d %d",&n,&m)){
if(n==0&&m==0)
break;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++){
if(i==j)
a[i][j]=0;
else
a[i][j]=inf;
}
for(int i=0;i<m;i++){
int x,y,z;
scanf("%d %d %d",&x,&y,&z);
a[x][y]=z;
a[y][x]=z;
}
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++){
if(a[i][j]>a[i][k]+a[k][j])
a[i][j]=a[i][k]+a[k][j];
}
printf("%d\n",a[1][n]);
}
return 0;
}