python——蓝桥杯

枚举

枚举:在数学和计算机科学理论中,一个集的枚举是列出某些有穷序列集的所有成员的程序,或者是一种特定类型对象的计数。

list1=['A','B','C','D','E']
for index,value in enumerate(list1):
	print(index,value)

排序

选择排序

首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。

list2=[2,1,0,3,7,5]
for i in range(len(list2)):
	for j in range(i+1,len(list2)):
		if list2[i]>list2[j]:
			list2[i],list2[j]=list2[j],list2[i]
print(list2)

冒泡排序

比较相邻的元素。如果第一个比第二个大,就交换它们两个;
对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;
针对所有的元素重复以上的步骤,除了最后一个;
重复步骤1~3,直到排序完成。

list3=[2,9,6,4,0,1]
for i in range(len(list3)):
	for j in range(0,len(list3)-i-1):
		if list3[j]>list3[j+1]:
			list3[j],list3[j+1]=list3[j+1],list[j]
print(list3)

贪心搜索

贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择

字符串算法

圆的面积

import math
r=int(input())
s=math.pi*r*r
print({:.7f}'.format(s))

字母图形

def main():
    str1='ABCDEFGHIJKLMNOPQRSTUVWXYZ'
    n,m=map(int,input().split(' '))
    for i in range(n):
        s1=str1[1:i+1:]
        s2=str1[:abs(m-i)]
        s=s1[::-1]+s2
        print(s[:m])
main()
### 关于蓝桥杯 Python 中跳跃类题目及其解法 #### 题目背景与分析 蓝桥杯竞赛中的跳跃类题目通常涉及数组操作、动态规划 (Dynamic Programming, DP) 或贪心算法。这类问题的核心在于如何合理设计状态以及优化计算过程[^2]。 对于跳跃类问题,常见的场景包括: - **单向跳跃**:给定一系列位置和每一步可跳的最大步数,判断能否到达终点。 - **多方向跳跃**:允许向前或向后跳跃一定距离,求最小跳跃次数或其他目标函数值。 以下是针对此类问题的一个通用解决方案框架: --- #### 动态规划解决跳跃问题的思路 动态规划是一种常用的策略来处理跳跃类问题。其核心思想是定义一个 `dp` 数组,其中每个元素表示达到该位置所需的最少跳跃次数或某种最优条件下的代价。 假设我们有一个长度为 `n` 的数组 `arr` 表示各个位置的状态,则可以按照如下方式构建动态规划方程: ```python def min_jumps(arr): n = len(arr) dp = [float('inf')] * n # 初始化 dp 数组为无穷大 dp[0] = 0 # 初始位置不需要跳跃 for i in range(1, n): # 遍历每一个位置 for j in range(i): # 尝试从前一个位置跳到当前位置 if j + arr[j] >= i and dp[j] != float('inf'): # 如果可以从 j 跳到 i dp[i] = min(dp[i], dp[j] + 1) # 更新当前最少跳跃次数 return dp[-1] if dp[-1] != float('inf') else -1 # 返回最后一个位置的结果 ``` 上述代码实现了基于动态规划的最小跳跃次数问题解答方法。 --- #### 使用贪心算法优化跳跃问题 除了动态规划外,某些特定条件下还可以采用更高效的贪心算法解决问题。例如,在“跳跃游戏”中只需要验证是否存在一种路径能够抵达终点即可,而无需关心具体的跳跃次数。 下面是一个典型的贪心算法实现例子: ```python def can_jump_greedy(arr): max_reach = 0 # 当前能到达的最远索引 for i, jump in enumerate(arr): if i > max_reach: # 若当前位置无法被覆盖则返回 False return False max_reach = max(max_reach, i + jump) # 更新最大可达范围 return True # 如果循环结束说明可以到达最后一位 ``` 此段代码利用了局部最优原则——即每次尽可能扩展所能触及的距离,从而保证整体效率最高。 --- #### 总结 无论是通过动态规划还是贪心算法解决跳跃类问题,都需要仔细考虑边界情况并选择合适的数据结构存储中间结果。此外,实际编程过程中还应注意时间复杂度控制以应对大规模数据集带来的挑战。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值