动手学习机器学习(Day4)

softmax回归实现

导包

import torch
from IPython import display
from d2l import torch as d2l

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

初始化模型参数

num_inputs = 784 #28x28的图片拉成一个向量784
num_outputs = 10
#X输入将会是1x784
W = torch.normal(0, 0.01, size=(num_inputs, num_outputs), requires_grad=True) #784行,10列
b = torch.zeros(num_outputs, requires_grad=True) #1行10列

实现softmax

需要用到一个功能:

X = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
X.sum(0, keepdim=True), X.sum(1, keepdim=True)

0是将列压扁,把行的各项相加,变为1行,1是将行压扁,把列的各项相加,变为1列

(tensor([[5., 7., 9.]]),
 tensor([[ 6.],
         [15.]]))

实现softmax:

def softmax(X):
    X_exp = torch.exp(X)
    partition = X_exp.sum(1, keepdim=True) #sum的参数为1,按行求和,比如,a*b变为a*1,因为b列的数字求和变为一个数字
    return X_exp / partition #因为分子分母行列数不匹配,用到了广播机制

实现softmax回归模型:

def net(X):
    return softmax(torch.matmul(X.reshape((-1, W.shape[0])), W) + b) #X将被重构为256x784的矩阵,X每次取batch_size数量的图片,batch_size是256

需要学习一种索引方法:

创建一个数据样本y_hat,其中包含2个样本在3个类别的预测概率,以及它们对应的标签y。使用y作为y_hat中概率的索引

y = torch.tensor([0, 2])
y_hat = torch.tensor([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])
y_hat[[0,1], y]
tensor([0.1000, 0.5000])

理解:对于y_hat第0行和第1行,识别到y标签的概率,即第0行识别为0的概率和第一行识别为2的概率,分别为0.1,0.5,即y_hat第一个索引为行索引,指明在y_hat的范围内,而y作为真实标签,结果就是y_hat识别真实标签的概率

实现交叉熵损失函数:

def cross_entropy(y_hat, y):
    return - torch.log(y_hat[range(len(y_hat)), y])
# y存储的是每一行(即每一个样本)对应的真实标签,y_hat从0取到y_hat的行数,列取y中的值,比如,h_hat行索引取0时,列索引取y[0],,h_hat行索引取1时,列索引取y[1]

准确性计算:

def accuracy(y_hat, y):  
    """计算预测正确的数量"""
    if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
        y_hat = y_hat.argmax(axis=1) #axis=1将返回每一行最大数值的索引,argmax是返回最大数索引的,而axis是表明按行找最大值还是按列找最大值,感觉和sum类似
    cmp = y_hat.type(y.dtype) == y
    return float(cmp.type(y.dtype).sum())

accuracy(y_hat, y) / len(y)

精度计算:(这里用到了Accumulator)

def evaluate_accuracy(net, data_iter):  
    """计算在指定数据集上模型的精度"""
    if isinstance(net, torch.nn.Module): #如果net是torchnn模型的话
        net.eval() ##把模型转为评估模式,就是不用算梯度了
    metric = Accumulator(2)
    with torch.no_grad():
        for X, y in data_iter:
            metric.add(accuracy(net(X), y), y.numel())
    return metric[0] / metric[1]

Accumulator实例中创建了2个变量,
分别用于存储正确预测的数量和预测的总数量

class Accumulator:  
    """在n个变量上累加"""
    def __init__(self, n):
        self.data = [0.0] * n

    def add(self, *args):
        self.data = [a + float(b) for a, b in zip(self.data, args)]

    def reset(self):
        self.data = [0.0] * len(self.data)

    def __getitem__(self, idx):
        return self.data[idx]

evaluate_accuracy(net, test_iter)

updater是一个梯度下降函数:

lr = 0.1

def updater(batch_size):
    return d2l.sgd([W, b], lr, batch_size)

Softmax回归的训练:

def train_epoch_ch3(net, train_iter, loss, updater):  
    """训练模型一个迭代周期(定义见第3章)"""
    if isinstance(net, torch.nn.Module):
        net.train()
    metric = Accumulator(3)
    for X, y in train_iter:
        y_hat = net(X)
        l = loss(y_hat, y)
        if isinstance(updater, torch.optim.Optimizer):
            updater.zero_grad()
            l.mean().backward()
            updater.step()
        else:
            l.sum().backward()
            updater(X.shape[0])
        metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())
    return metric[0] / metric[2], metric[1] / metric[2]

训练模型10个迭代周期

num_epochs = 10
train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, updater)

可视化部分:

class Animator:  
    """在动画中绘制数据"""
    def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,
                 ylim=None, xscale='linear', yscale='linear',
                 fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,
                 figsize=(3.5, 2.5)):
        if legend is None:
            legend = []
        d2l.use_svg_display()
        self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)
        if nrows * ncols == 1:
            self.axes = [self.axes, ]
        self.config_axes = lambda: d2l.set_axes(
            self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
        self.X, self.Y, self.fmts = None, None, fmts

    def add(self, x, y):
        if not hasattr(y, "__len__"):
            y = [y]
        n = len(y)
        if not hasattr(x, "__len__"):
            x = [x] * n
        if not self.X:
            self.X = [[] for _ in range(n)]
        if not self.Y:
            self.Y = [[] for _ in range(n)]
        for i, (a, b) in enumerate(zip(x, y)):
            if a is not None and b is not None:
                self.X[i].append(a)
                self.Y[i].append(b)
        self.axes[0].cla()
        for x, y, fmt in zip(self.X, self.Y, self.fmts):
            self.axes[0].plot(x, y, fmt)
        self.config_axes()
        display.display(self.fig)
        display.clear_output(wait=True)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值