现代神经网络架构
文章目录
含并行连结的网络(GoogLeNet)
GoogLeNet吸收了NiN中串联网络中的思想,大量使用了 1 × 1 1 \times 1 1×1卷积,并在此基础上做了改进。
采用了全局平均池化来代替传统的全连接层,减少了参数数量,还能降低过拟合的风险;继续使用了模块化设计,引入了Inception模块,一种新的网络结构,在同一层中并行使用不同大小的卷积核来捕捉多尺度的特征;利用不同大小的卷积核组合来改进网络架构,来提高识别的精确度。
Inception块
Inception块由四条并行路径组成,前三条路径使用窗口大小为 1 × 1 1\times 1 1×1、 3 × 3 3\times 3 3×3和 5 × 5 5\times 5 5×5的卷积层,从不同空间大小中提取信息,中间的两条路径在输入上执行 1 × 1 1\times 1 1×1卷积,以减少通道数,从而降低模型的复杂性。第四条路径使用 3 × 3 3\times 3 3×3最大汇聚层,然后使用 1 × 1 1\times 1 1×1卷积层来改变通道数。
这四条路径都使用合适的填充来使输入与输出的高和宽一致,最后我们将每条线路的输出在通道维度上连结,将四条路输出的通道数合并在一起,并构成Inception块的输出。在Inception块中,通常调整的超参数是每层输出通道数。
图中标记为白色的卷积层可以认为是用来改变通道数的,要么改变输入要么改变输出;标记为蓝色的卷积层可以认为是用来抽取信息的。第1条路中标记为蓝色的卷积层不抽取空间信息,只抽取通道信息,第2、3条路中标记为蓝色的卷积层是用来抽取空间信息的,第4条路中标记为蓝色的最大池化层也是用来抽取空间信息的,增强鲁棒性。
代码实现
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
class Inception(nn.Module):
# c1--c4是每条路径的输出通道数
def __init__(self, in_channels, c1, c2, c3, c4, **kwargs):
super(Inception, self).__init__(**kwargs)
# 线路1,单1x1卷积层
self.p1_1 = nn.Conv2d(in_channels, c1, kernel_size=1)
# 线路2,1x1卷积层后接3x3卷积层
self.p2_1 = nn.Conv2d(in_channels, c2[0], kernel_size=1)
self.p2_2 = nn.Conv2d(c2[0], c2[1], kernel_size=3, padding=1)
# 线路3,1x1卷积层后接5x5卷积层
self.p3_1 = nn.Conv2d(in_channels, c3[0], kernel_size=1)
self.p3_2 = nn.Conv2d(c3[0], c3[1], kernel_size=5, padding=2)
# 线路4,3x3最大汇聚层后接1x1卷积层
self.p4_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
self.p4_2 = nn.Conv2d(in_channels, c4, kernel_size=1)
def forward(self, x):
p1 = F.relu(self.p1_1(x))
p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))
p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))
p4 = F.relu(self.p4_2(self.p4_1(x)))
# 在通道维度上连结输出
return torch.cat((p1, p2, p3, p4), dim=1)
GoogLeNet
有效的原因:滤波器(Filter)的组合,通过不同的滤波器尺寸来探索图像,意味着不同大小的滤波器可以有效地识别不同范围的图像细节;故可以为不同滤波器分配不同数量的参数。
参数个数比直接用卷积少,计算量大幅度减少;不仅增加了不同设置的卷积层,参数量和计算量都显著降低。
GoogLeNet模型
GoogLeNet
一共使用9个Inception块和全局平均汇聚层的堆叠来生成其估计值。Inception块之间的最大汇聚层可降低维度。
第一个模块类似于AlexNet
和LeNet
,Inception块的组合从VGG
继承,全局平均汇聚层避免了在最后使用全连接层。
Inception的变种
Inception-BN(V2):使用batch normalization
Inceprtion-V3:修改了Inception块,网络变得更复杂更深
- 替换5 * 5为多个3 * 3卷积层
- 替换5 * 5为多个1 * 7和7 * 1卷积层,区别先看横向区别再看纵向区别,代替了原来的5*5卷积
- 替换3 * 3为多个1 * 3和3 * 1卷积层
总结
- Inception块相当于一个有4条路径的子网络。它通过不同窗口形状的卷积层和最大池化层来并行抽取信息,并使用** 1 × 1 1×1 1×1卷积层减少每像素级别上的通道维数**从而降低模型复杂度。
GoogLeNet
将多个设计精细的Inception块与其他层(卷积层、全连接层)串联起来。其中Inception块的通道数分配之比是在ImageNet
数据集上通过大量的实验得来的。GoogLeNet
和它的后继者们一度是ImageNet
上最有效的模型之一:它以较低的计算复杂度提供了类似的测试精度。
Q:调参如何去调
A:ImageNet
的一个小子集上去调,样本减少一点,测一下观察性能,再放大子集上去调整。
批量归一化
随着模型层数的增加,越上层的梯度越大,越下层的梯度越小;即上层的模型很快就容易拟合成功,而下层的模型需要重新学习很多次,模型收敛变慢,不容易拟合。那么,我们要如何去学习底部层从而避免变化顶部层?我们可以通过批量归一化来解决层数过深而导致的模型训练过慢的问题。
核心的根本:批量归一化为了防止数据分布的不稳定,尤其是内部协变量偏移,进而避免梯度爆炸和梯度消失的问题。
核心思想
批量归一化应用于单个可选层(也可以应用到所有层),其原理如下:在每次训练迭代中,我们首先规范化输入,即通过减去其均值并除以其标准差,其中两者均基于当前小批量处理。接下来,我们应用比例系数和比例偏移。正是由于这个基于批量统计的标准化,才有了批量规范化的名称。
从形式上来说,用 x ∈ B \mathbf{x} \in \mathcal{B} x∈B表示一个来自小批量 B \mathcal{B} B的输入,批量规范化 B N \mathrm{BN} BN根据以下表达式转换 x \mathbf{x} x:
B N ( x ) = γ ⊙ x − μ ^ B σ ^ B + β . \mathrm{BN}(\mathbf{x}) = \boldsymbol{\gamma} \odot \frac{\mathbf{x} - \hat{\boldsymbol{\mu}}_\mathcal{B}}{\hat{\boldsymbol{\sigma}}_\mathcal{B}} + \boldsymbol{\beta}. BN(x)=γ⊙σ^Bx−μ^B+β.
μ ^ B \hat{\boldsymbol{\mu}}_\mathcal{B} μ^B是小批量 B \mathcal{B} B的样本均值, σ ^ B \hat{\boldsymbol{\sigma}}_\mathcal{B} σ^B是小批量 B \mathcal{B} B的样本标准差。应用标准化后,生成的小批量的平均值为0和单位方差为1。
由于单位方差(与其他一些魔法数)是一个主观的选择,因此我们通常包含拉伸参数(scale) γ \boldsymbol{\gamma} γ和偏移参数(shift) β \boldsymbol{\beta} β,它们的形状与