第六章:string类
1.标准库中的string类
1.1 string类
字符串是表示字符序列的类
标准的字符串类提供了对此类对象的支持,其接口类似于标准字符容器的接口,但添加了专门用于操作单字节字符字符串的设计特性。
string类是使用char(即作为它的字符类型,使用它的默认char_traits和分配器类型(关于模板的更多信息,请参阅basic_string)。
string类是basic_string模板类的一个实例,它使用char来实例化basic_string模板类,并用char_traits和allocator作为basic_string的默认参数(根于更多的模板信息请参考basic_string)。
注意,这个类独立于所使用的编码来处理字节:如果用来处理多字节或变长字符(如UTF-8)的序列,这个类的所有成员(如长度或大小)以及它的迭代器,将仍然按照字节(而不是实际编码的字符)来操作。
总结:
string是表示字符串的字符串类
该类的接口与常规容器的接口基本相同,再添加了一些专门用来操作string的常规操作。
string在底层实际是:basic_string模板类的别名,typedef basic_string<char, char_traits, allocator>string;
不能操作多字节或者变长字符的序列。
在使用string类时,必须包含#include头文件以及using namespace std
1.2 string类的常用接口说明
只介绍最常用的一部分接口,还有一些没介绍的可以通过文档学习(看文档很重要)。
文档很规范,分为三个板块:接口函数声明;接口函数功能及参数与返回值的说明;使用样例
①string类对象的常见构造
(constructor)函数名称 | 功能说明 |
---|---|
string() (重点) | 构造空的string类对象,即空字符串 |
string(const char* s) (重点) | 用C-string来构造string类对象 |
string(size_t n, char c) | string类对象中包含n个字符c |
string(const string&s) (重点) | 拷贝构造函数 |
void Teststring()
{
string s1; // 构造空的string类对象s1
string s2("hello world"); // 用C格式字符串构造string类对象s2
string s3(s2); // 拷贝构造s3
}
②string类对象的容量操作
函数名称 | 功能说明 |
---|---|
size(重点) | 返回字符串有效字符长度 |
length | 返回字符串有效字符长度 |
capacity | 返回空间总大小 |
empty(重点) | 检测字符串释放为空串,是返回true,否则返回false |
clear(重点) | 清空有效字符 |
reserve (重点) | 为字符串预留空间 |
resize (重点) | 将有效字符的个数该成n个,多出的空间用字符c填充 |
// size/clear/resize
void Teststring1()
{
// 注意:string类对象支持直接用cin和cout进行输入和输出
string s("hello, world!!!");
cout << s.size() << endl; //不包括'\0'
cout << s.length() << endl;
cout << s.capacity() << endl;
cout << s <<endl;
// 将s中的字符串清空,注意清空时只是将size清0,不改变底层空间的大小
s.clear();
cout << s.size() << endl;
cout << s.capacity() << endl;
// 将s中有效字符个数增加到10个,多出位置用'a'进行填充
// “aaaaaaaaaa”
s.resize(10, 'a');
cout << s.size() << endl;
cout << s.capacity() << endl;
// 将s中有效字符个数增加到15个,多出位置用缺省值'\0'进行填充
// "aaaaaaaaaa\0\0\0\0\0"
// 注意此时s中有效字符个数已经增加到15个
s.resize(15);
cout << s.size() << endl;
cout << s.capacity() << endl;
cout << s << endl;
// 将s中有效字符个数缩小到5个
s.resize(5);
cout << s.size() << endl;
cout << s.capacity() << endl;
cout << s << endl;
}
//===========================================================================
void Teststring2()
{
string s;
// 测试reserve是否会改变string中有效元素个数(不会)
s.reserve(100);
cout << s.size() << endl;
cout << s.capacity() << endl;
// 测试reserve参数小于string的底层空间大小时,是否会将空间缩小(不会)
s.reserve(50);
cout << s.size() << endl;
cout << s.capacity() << endl;
}
// 利用reserve提高插入数据的效率,避免增容带来的开销
//===========================================================================
void TestPushBack()
{
string s;
size_t sz = s.capacity();
cout << "making s grow:\n";
for (int i = 0; i < 100; ++i)
{
s.push_back('c');
if (sz != s.capacity())
{
sz = s.capacity();
cout << "capacity changed: " << sz << '\n';
}
}
}
void TestPushBackReserve()
{
string s;
s.reserve(100);
size_t sz = s.capacity();
cout << "making s grow:\n";
for (int i = 0; i < 100; ++i)
{
s.push_back('c');
if (sz != s.capacity())
{
sz = s.capacity();
cout << "capacity changed: " << sz << '\n';
}
}
}
注意:
size()与length()方法底层实现原理完全相同,引入size()的原因是为了与其他容器的接口保持一致,一般情况下基本都是用size()。
clear()只是将string中有效字符清空,不改变底层空间大小。
resize(size_t n) 与 resize(size_t n, char c)都是将字符串中有效字符个数改变到n个,不同的是当字符个数增多时:resize(n)用0来填充多出的元素空间,resize(size_t n, char c)用字符c来填充多出的元素空间。注意:resize在改变元素个数时,如果是将元素个数增多,可能会改变底层容量的大小,如果是将元素个数减少,底层空间总大小不变。
reserve(size_t res_arg=0):为string预留空间,不改变有效元素个数,当reserve的参数小于string的底层空间总大小时,reserver不会改变容量大小。
③string类对象的访问及遍历操作
函数名称 | 功能说明 |
---|---|
operator[] (重点) | 返回pos位置的字符,const string类对象调用 |
begin + end | begin获取一个字符的迭代器 + end获取最后一个字符下一个位置的迭代器 |
rbegin + rend | begin获取一个字符的迭代器 + end获取最后一个字符下一个位置的迭代器 |
范围for | C++11支持更简洁的范围for的新遍历方式 |
void Teststring()
{
string s1("hello World");
const string s2("Hello World");
cout<<s1<<" "<<s2<<endl;
cout<<s1[0]<<" "<<s2[0]<<endl;
s1[0] = 'H';
cout<<s1<<endl;
// s2[0] = 'h'; 代码编译失败,因为const类型对象不能修改
}
void Teststring()
{
string s("hello World");
// 3种遍历方式:
// 需要注意的以下三种方式除了遍历string对象,还可以遍历是修改string中的字符,
// 另外以下三种方式对于string而言,第一种使用最多
// 1. for+operator[]
for(size_t i = 0; i < s.size(); ++i)
cout<<s[i]<<endl;
// 2.迭代器
//[begin(),end()) end()返回的不是最后一个数据位置的迭代器,返回的是最后一个位置下一个位置
//注意:c++凡是给迭代器一般给的都是左闭右开的区间
//迭代器是一种统一使用的方式
string::iterator it = s.begin(); //正向
while(it != s.end())
{
cout<<*it<<endl;
++it;
}
string::reverse_iterator rit = s.rbegin(); //反向
while(rit != s.rend())
cout<<*rit<<endl;
// 3.范围for
//依次取容器中的数据,赋值给e,自动判断结束
//如果要修改,要加&
for(auto ch : s)
cout<<ch<<endl;
}
④string类对象的修改操作
函数名称 | 功能说明 |
---|---|
push_back | 在字符串后尾插字符c |
append | 在字符串后追加一个字符串 |
operator+= (重点) | 在字符串后追加字符串str |
c_str(重点) | 返回C格式字符串 |
find + npos(重点) | 从字符串pos位置开始往后找字符c,返回该字符在字符串中的位置 |
rfind | 从字符串pos位置开始往前找字符c,返回该字符在字符串中的位置 |
substr | 在str中从pos位置开始,截取n个字符,然后将其返回 |
void Teststring()
{
string str;
str.push_back(' '); // 在str后插入空格
str.append("Hello"); // 在str后追加一个字符"Hello"
str += 'W'; // 在str后追加一个字符'W'
str += "orld"; // 在str后追加一个字符串"orld"
cout<<str<<endl;
cout<<str.c_str()<<endl; // 以C语言的方式打印字符串
// 获取file的后缀
string file("string.cpp");
size_t pos = file.rfind('.');
string suffix(file.substr(pos, file.size()-pos));
cout << suffix << endl;
// npos是string里面的一个静态成员变量
// static const size_t npos = -1;
// 取出url中的域名
string url("http://www.cplusplus.com/reference/string/string/find/");
cout << url << endl;
size_t start = url.find("://");
if (start == string::npos)
{
cout << "invalid url" << endl;
return;
}
start += 3;
size_t finish = url.find('/', start);
string address = url.substr(start, finish - start);
cout << address << endl;
// 删除url的协议前缀
pos = url.find("://");
url.erase(0, pos+3);
cout<<url<<endl;
}
注意:
在string尾部追加字符时,s.push_back© / s.append(1, c) / s += 'c’三种的实现方式差不多,一般情况下string类的+=操作用的比较多,+=操作不仅可以连接单个字符,还可以连接字符串。
对string操作时,如果能够大概预估到放多少字符,可以先通过reserve把空间预留好。
⑤string类非成员函数
函数 | 功能说明 |
---|---|
operator+ | 尽量少用,因为传值返回,导致深拷贝效率低 |
operator>> (重点) | 输入运算符重载 |
operator<< (重点) | 输出运算符重载 |
getline (重点) | 获取一行字符串 |
relational operators (重点) | 大小比较 |
2.string类的模拟实现
2.1 浅拷贝
浅拷贝:也称位拷贝,编译器只是将对象中的值拷贝过来。如果对象中管理资源,最后就会导致多个对象共享同一份资源,当一个对象销毁时就会将该资源释放掉,而此时另一些对象不知道该资源已经被释放,以为还有效,所以 当继续对资源进项操作时,就会发生发生了访问违规。
2.2 深拷贝
要解决浅拷贝问题,C++中引入了深拷贝。
如果一个类中涉及到资源的管理,其拷贝构造函数、赋值运算符重载以及析构函数必须要显式给出。一般情况都是按照深拷贝方式提供。
2.3 写时拷贝
写时拷贝就是一种拖延症,是在浅拷贝的基础之上增加了引用计数的方式来实现的。
引用计数:用来记录资源使用者的个数。在构造时,将资源的计数给成1,每增加一个对象使用该资源,就给计数增加1,当某个对象被销毁时,先给该计数减1,然后再检查是否需要释放资源,如果计数为1,说明该对象时资源的最后一个使用者,将该资源释放;否则就不能释放,因为还有其他对象在使用该资源。
2.4 string类的模拟实现
#pragma once
#define _CRT_SECURE_NO_WARNINGS 1
#include<iostream>
#include<string.h>
#include<assert.h>
using namespace std;
namespace z
{
class string
{
public:
typedef char* iterator;
typedef const char* const_iterator;
iterator begin()
{
return _str;
}
iterator end()
{
return _str + _size;
}
const_iterator begin() const
{
return _str;
}
const_iterator end() const
{
return _str + _size;
}
string(const char* str = "")
:_size(strlen(str))
, _capacity(_size)
{
_str = new char[_capacity + 1];
strcpy(_str, str);
}
string(const size_t n, const char ch)
:_size(n)
, _capacity(_size)
{
_str = new char[_capacity + 1];
for (size_t i = 0; i < n; ++i)
{
_str[i] = ch;
}
_str[_size] = '\0';
}
void swap(string& s)
{
::swap(_str, s._str);
::swap(_size, s._size);
::swap(_capacity, s._capacity);
}
//传统写法
/*string(const string& s)
:_str(new char[strlen(s._str) + 1])
{
strcpy(_str, s._str);
}*/
/*string& operator=(const string& s)
{
if (this != &s)
{
char* tmp = new char[strlen(s._str) + 1];
delete[] _str;
_str = tmp;
strcpy(_str, s._str);
}
return *this;
}*/
//现代写法
string(const string& s)
:_str(nullptr)
{
string tmp(s._str);
swap(tmp);
}
string& operator=(string s)
{
swap(s);
return *this;
}
char& operator[](size_t pos)
{
assert(pos < _size);
return _str[pos];
}
const char& operator[](size_t pos) const
{
assert(pos < _size);
return _str[pos];
}
~string()
{
delete[] _str;
_str = nullptr;
_size = _capacity = 0;
}
void reserve(size_t n)
{
if (n > _capacity)
{
char* tmp = new char[n + 1];
strcpy(tmp, _str);
delete[] _str;
_str = tmp;
_capacity = n;
}
}
void resize(size_t n, char ch = '\0')
{
if (n < _size)
{
_str[n] = '\0';
_size = n;
}
else
{
if (n > _capacity)
{
reserve(n);
}
for (size_t i = _size; i < n; ++i)
{
_str[i] = ch;
}
_size = n;
_str[_size] = '\0';
}
}
void push_back(char ch)
{
/*if (_size >= _capacity)
{
size_t newcapacity = _capacity == 0 ? 4 : 2 * _capacity;
reserve(newcapacity);
}
_str[_size] = ch;
++_size;
_str[_size] = '\0'; */
insert(_size, ch);
}
void append(const char* str)
{
/*size_t len = strlen(str);
if (_size + len > _capacity)
{
reserve(_size + len);
}
strcpy(_str + _size, str);
_size += len;*/
insert(_size, str);
}
string& operator+=(char ch)
{
push_back(ch);
return *this;
}
string& operator+=(const char* str)
{
append(str);
return *this;
}
string& operator+=(const string& s)
{
*this += s._str;
return *this;
}
size_t size() const
{
return _size;
}
size_t capacity() const
{
return _capacity;
}
string& insert(size_t pos, char ch)
{
assert(pos <= _size);
if (_size == _capacity)
{
size_t newcapacity = _capacity == 0 ? 4 : 2 * _capacity;
reserve(newcapacity);
}
for (size_t i = _size + 1; i > pos; --i)
{
_str[i] = _str[i - 1];
}
_str[pos] = ch;
++_size;
return *this;
}
string& insert(size_t pos, const char* str)
{
assert(pos <= _size);
size_t len = strlen(str);
if (len + _size > _capacity)
{
reserve(len + _size);
}
for (size_t i = _size + len; i >= (pos + len); --i)
{
_str[i] = _str[i - len];
}
for (size_t i = 0; i < len; ++i)
{
_str[pos + i] = str[i];
}
_size += len;
return *this;
}
string& erase(size_t pos = 0, size_t len = npos)
{
assert(pos < _size);
if (len >= (_size - pos))
{
_str[pos] = '\0';
_size = pos;
}
else
{
for (size_t i = pos + len; i <= _size; ++i)
{
_str[i - len] = _str[i];
}
_size -= len;
}
return *this;
}
size_t find(char ch, size_t pos = 0)
{
for (size_t i = pos; i < _size; ++i)
{
if (_str[i] == ch)
return i;
}
return npos;
}
size_t find(const char* sub, size_t pos = 0)
{
const char* p = strstr(_str + pos, sub);
if (p)
return p - _str;
return npos;
}
const char* c_str()
{
return _str;
}
void clear()
{
_str[0] = '\0';
_size = 0;
}
private:
char* _str;
size_t _size;
size_t _capacity; //不包含最后做标识的'\0'
static const size_t npos;
};
const size_t string::npos = -1;
ostream& operator<<(ostream& out, const string& s)
{
for (size_t i = 0; i < s.size(); ++i)
{
out << s[i];
}
return out;
}
istream& operator>>(istream& in, string& s)
{
s.clear();
char ch = in.get();
while (ch != ' ' && ch != '\n')
{
s += ch;
ch = in.get();
}
return in;
}
istream& getline(istream& in, string& s)
{
s.clear();
char ch = in.get();
while (ch != '\n')
{
s += ch;
ch = in.get();
}
return in;
}
string operator+(const string& s1, const char ch)
{
string ret = s1;
ret += ch;
return ret;
}
//存在两次深拷贝,尽量少用
string operator+(const string& s1, const char* str)
{
string ret = s1;
ret += str;
return ret;
}
bool operator>(const string& s1, const string& s2)
{
size_t i1 = 0, i2 = 0;
while (i1 < s1.size() && i2 < s2.size())
{
if (s1[i1] > s2[i2])
{
return true;
}
else if (s1[i1] < s2[i2])
{
return false;
}
else
{
++i1;
++i2;
}
}
if (i1 < s1.size())
{
return true;
}
return false;
}
bool operator==(const string& s1, const string& s2)
{
size_t i1 = 0, i2 = 0;
while (i1 < s1.size() && i2 < s2.size())
{
if (s1[i1] > s2[i2])
{
return false;
}
else if (s1[i1] < s2[i2])
{
return false;
}
else
{
++i1;
++i2;
}
}
if (i1 == s1.size() && i2 == s2.size())
{
return true;
}
return false;
}
inline bool operator!=(const string& s1, const string& s2)
{
return !(s1 == s2);
}
inline bool operator>=(const string& s1, const string& s2)
{
return (s1 > s2) || (s1 == s2);
}
inline bool operator<(const string& s1, const string& s2)
{
return !(s1 >= s2);
}
inline bool operator<=(const string& s1, const string& s2)
{
return !(s1 > s2);
}
}