#include <stdio.h>
#include <stdbool.h>
#define INF 9999
#define V 5 // 图中顶点的数量
int findMinKey(int key[], bool mstSet[]) {
int min = INF;
int minIndex;
for (int v = 0; v < V; v++) {
if (mstSet[v] == false && key[v] < min) {
min = key[v];
minIndex = v;
}
}
return minIndex;
}
void printMST(int parent[], int graph[V][V]) {
printf("Edge \tWeight\n");
for (int i = 1; i < V; i++) {
printf("%d - %d \t%d \n", parent[i], i, graph[i][parent[i]]);
}
}
void primMST(int graph[V][V]) {
int parent[V]; // 用于存储最小生成树中的父节点
int key[V]; // 用于存储顶点的权值
bool mstSet[V]; // 用于存储已选中的顶点
for (int i = 0; i < V; i++) {
key[i] = INF;
mstSet[i] = false;
}
key[0] = 0; // 将第一个顶点作为起始顶点
parent[0] = -1; // 第一个顶点没有父节点
for (int count = 0; count < V - 1; count++) {
int u = findMinKey(key, mstSet);
mstSet[u] = true;
for (int v = 0; v < V; v++) {
if (graph[u][v] && mstSet[v] == false && graph[u][v] < key[v]) {
parent[v] = u;
key[v] = graph[u][v];
}
}
}
printMST(parent, graph);
}
int main() {
int graph[V][V] = {
{0, 2, 0, 6, 0},
{2, 0, 3, 8, 5},
{0, 3, 0, 0, 7},
{6, 8, 0, 0, 9},
{0, 5, 7, 9, 0}
};
primMST(graph);
return 0;
}