7 JVM调优实战

1 Arthas使用

# github下载arthas
wget https://alibaba.github.io/arthas/arthas‐boot.jar
# 或者 Gitee 下载
wget https://arthas.gitee.io/arthas‐boot.jar

示例:

public class Arthas {

    private static HashSet hashSet = new HashSet();

    public static void main(String[] args) {
        // 模拟 CPU 过高
        cpuHigh();
        // 模拟线程死锁
        deadThread();
        // 不断的向 hashSet 集合增加数据
        addHashSetThread();
    }

    /**
     * 不断的向 hashSet 集合添加数据
     */
    public static void addHashSetThread() {
        // 初始化常量
        new Thread(() -> {
            int count = 0;
            while (true) {
                try {
                    hashSet.add("count" + count);
                    Thread.sleep(1000);
                    count++;
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }).start();
    }

    public static void cpuHigh() {
        new Thread(() -> {
            while (true) {

            }
        }).start();
    }

    /**
     * 46 * 死锁
     * 47
     */
    private static void deadThread() {
        /** 创建资源 */
        Object resourceA = new Object();
        Object resourceB = new Object();
        // 创建线程
        Thread threadA = new Thread(() -> {
            synchronized (resourceA) {
                System.out.println(Thread.currentThread() + " get ResourceA");
                try {
                    Thread.sleep(1000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                System.out.println(Thread.currentThread() + "waiting get resourceB");
                synchronized (resourceB) {
                    System.out.println(Thread.currentThread() + " get resourceB");
                }
            }
        });

        Thread threadB = new Thread(() -> {
            synchronized (resourceB) {
                System.out.println(Thread.currentThread() + " get ResourceB");
                try {
                    Thread.sleep(1000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                System.out.println(Thread.currentThread() + "waiting get resourceA");
                synchronized (resourceA) {
                    System.out.println(Thread.currentThread() + " get resourceA");
                }
            }
        });
        threadA.start();
        threadB.start();
    }
}

选择进程序号1,进入进程信息操作 

输入dashboard可以查看整个进程的运行情况,线程、内存、GC、运行环境信息:

输入thread可以查看线程详细情况

输入 thread加上线程ID 可以查看线程堆栈

 输入 thread -b 可以查看线程死锁

输入 jad加类的全名 可以反编译,这样可以方便我们查看线上代码是否是正确的版本 

使用 ognl 命令可以查看线上系统变量的值,甚至可以修改变量的值 

2 GC日志

打印GC日志方法,在JVM参数里增加参数,%t 代表时间

‐Xloggc:./gc‐%t.log ‐XX:+PrintGCDetails ‐XX:+PrintGCDateStamps ‐XX:+PrintGCTimeStamps ‐XX:+PrintGCCause
‐XX:+UseGCLogFileRotation ‐XX:NumberOfGCLogFiles=10 ‐XX:GCLogFileSize=100M

2.1 分析GC日志

java ‐jar ‐Xloggc:./gc‐%t.log ‐XX:+PrintGCDetails ‐XX:+PrintGCDateStamps ‐XX:+PrintGCTimeStamps ‐XX:+PrintGCCause ‐XX:+UseGCLogFileRotation ‐XX:NumberOfGCLogFiles=10 ‐XX:GCLogFileSize=100M microservice‐eureka‐server.jar

第一行红框,是项目的配置参数。这里不仅配置了打印GC日志,还有相关的VM内存参数

第二行红框中的是在这个GC时间点发生GC之后相关GC情况

1、对于2.909: 这是从jvm启动开始计算到这次GC经过的时间,前面还有具体的发生时间日期。
2、Full GC(Metadata GC Threshold)指这是一次full gc,括号里是gc的原因, PSYoungGen是年轻代的GC,
ParOldGen是老年代的GC,Metaspace是元空间的GC
3、 6160K->0K(141824K),这三个数字分别对应GC之前占用年轻代的大小,GC之后年轻代占用,以及整个年轻代的大
小。
4、112K->6056K(95744K),这三个数字分别对应GC之前占用老年代的大小,GC之后老年代占用,以及整个老年代的
大小。
5、6272K->6056K(237568K),这三个数字分别对应GC之前占用堆内存的大小,GC之后堆内存占用,以及整个堆内存
的大小。
6、20516K->20516K(1069056K),这三个数字分别对应GC之前占用元空间内存的大小,GC之后元空间内存占用,以
及整个元空间内存的大小。
7、0.0209707是该时间点GC总耗费时间。

 从日志可以发现几次fullgc都是由于元空间不够导致的,所以我们可以将元空间调大点

java ‐jar ‐Xloggc:./gc‐adjust‐%t.log ‐XX:MetaspaceSize=256M ‐XX:MaxMetaspaceSize=256M ‐XX:+PrintGCDetails ‐XX:+Print
GCDateStamps
‐XX:+PrintGCTimeStamps ‐XX:+PrintGCCause ‐XX:+UseGCLogFileRotation ‐XX:NumberOfGCLogFiles=10 ‐XX:GCLogFileSize=100M
microservice‐eureka‐server.jar

调整完我们再看下gc日志发现已经没有因为元空间不够导致的fullgc了

CMS:

‐Xloggc:d:/gc‐cms‐%t.log ‐Xms50M ‐Xmx50M ‐XX:MetaspaceSize=256M ‐XX:MaxMetaspaceSize=256M ‐XX:+PrintGCDetails ‐XX:+P
rintGCDateStamps
‐XX:+PrintGCTimeStamps ‐XX:+PrintGCCause ‐XX:+UseGCLogFileRotation ‐XX:NumberOfGCLogFiles=10 ‐XX:GCLogFileSize=100M
‐XX:+UseParNewGC ‐XX:+UseConcMarkSweepGC

G1:

‐Xloggc:d:/gc‐g1‐%t.log ‐Xms50M ‐Xmx50M ‐XX:MetaspaceSize=256M ‐XX:MaxMetaspaceSize=256M ‐XX:+PrintGCDetails ‐XX:+Pr
intGCDateStamps
‐XX:+PrintGCTimeStamps ‐XX:+PrintGCCause ‐XX:+UseGCLogFileRotation ‐XX:NumberOfGCLogFiles=10 ‐XX:GCLogFileSize=100M
‐XX:+UseG1G

3 JVM参数汇总查看命令

java -XX:+PrintFlagsInitial 表示打印出所有参数选项的默认值
java -XX:+PrintFlagsFinal 表示打印出所有参数选项在运行程序时生效的值

4 Class常量池与运行时常量池

 Class文件中除了包含类的版本、字段、方法、接口等描述信息外,还有一项信息就是常量池;用于存放编译期生成的各种字面量符号引用

我们一般可以通过javap命令生成更可读的JVM字节码指令文件

javap -v Math.class

常量池中主要存放两大类常量:字面量符号引用

 

4.1 字符串常量池

1. 字符串的分配,和其他的对象分配一样,耗费高昂的时间与空间代价,作为最基础的数据类型,大量频繁的创建
字符串,极大程度地影响程序的性能
2. JVM为了提高性能和减少内存开销,在实例化字符串常量的时候进行了一些优化
为字符串开辟一个字符串常量池,类似于缓存区
创建字符串常量时,首先查询字符串常量池是否存在该字符串
存在该字符串,返回引用实例,不存在,实例化该字符串并放入池中

三种字符串操作:

        直接赋值:String s = "zhuge"; // s指向常量池中的引用

        String s1 = new String("zhuge"); // s1指向内存中的对象引用

        intern方法:String s2 = s1.intern();

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值