AQS----tryAcquire和tryRelease(int)详解

本文详细解析了Java并发工具类AbstractQueuedSynchronizer(AQS)的独占式同步状态获取与释放机制。讲解了tryAcquire、tryRelease、acquire、unlock等核心方法的实现,以及线程的阻塞与解除阻塞的过程。AQS使用CLH同步队列管理等待线程,并通过LockSupport.park/unpark实现线程的挂起与唤醒。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

独占式同步状态获取与释放
独占式同步状态获取
● tryAcquire(int):独占方式。尝试获取资源,成功则返回true,失败则返回false。
● tryRelease(int):独占方式。尝试释放资源,成功则返回true,失败则返回false。

#acquire(int arg) 方法,为 AQS 提供的模板方法。该方法为独占式获取同步状态,但是该方法对中断不敏感。也就是说,由于线程获取同步状态失败而加入到 CLH 同步队列中,后续对该线程进行中断操作时,线程不会从 CLH 同步队列中移除。代码如下:

//目的是为了去获取锁
public final void acquire(int arg) {
    //如果成功获得到锁,则没有必要进入到队列排队
    if (!tryAcquire(arg) &&
        //前面方法失败,这个时候就需要把当前线程挂起,放入到阻塞队列中
        acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
        selfInterrupt();
}

● #tryAcquire(int arg) 方法 : 直接抛出 UnsupportedOperationException 异常。尝试以独占模式获取。这个方法应该查询对象的状态是否允许以独占模式获取它,如果允许,则获取它。

  protected boolean tryAcquire(int arg) {
        throw new UnsupportedOperationException();
    }
	//ReentantLock的tryAcquire的实现
    // 尝试直接获取锁,返回值是boolean,代表是否获取到锁
    // 返回true:1.没有线程在等待锁;2.重入锁,线程本来就持有锁,也就可以理所当然可以直接获取
    protected final boolean tryAcquire(int acquires) {
        final Thread current = Thread.currentThread();
        int c = getState();
        // state == 0 此时此刻没有线程持有锁
        if (c == 0) {
            // 虽然此时此刻锁是可以用的,但是这是公平锁,既然是公平,就得讲究先来后到,
            // 看看有没有别人在队列中等了半天了
            if (!hasQueuedPredecessors() &&
                // 如果没有线程在等待,那就用CAS尝试一下,成功了就获取到锁了,
                // 不成功的话,只能说明一个问题,就在刚刚几乎同一时刻有个线程抢先了 =_=
                // 因为刚刚还没人的,我判断过了
                compareAndSetState(0, acquires)) {

                // 到这里就是获取到锁了,标记一下,告诉大家,现在是我占用了锁
                setExclusiveOwnerThread(current);
                return true;
            }
        }
        // 会进入这个else if分支,说明是重入了,需要操作:state=state+1
        // 这里不存在并发问题
        else if (current == getExclusiveOwnerThread()) {
            int nextc = c + acquires;
            if (nextc < 0)
                throw new Error("Maximum lock count exceeded");
            setState(nextc);
            return true;
        }
        // 如果到这里,说明前面的if和else if都没有返回true,说明没有获取到锁
        // 回到上面一个外层调用方法继续看:
        // if (!tryAcquire(arg) 
        //        && acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) 
        //     selfInterrupt();
        return false;
    }

首先判断这个锁有没有被别人获取,如果没有人获取,那么将锁的标识改为自己并返回成功,如果是自己获取的,那么就将状态位+1代表重入并返回成功。返回false表明获取锁失败需要进行后面的行为,将该线程加入到队列中。
● addWaiter(Node.EXCLUSIVE):当同步状态获取失败时,构建一个独占式节点并将其加入到同步队列的尾部

if (!tryAcquire(arg) &&
    // tryAcquire(arg)没有成功,这个时候需要把当前线程挂起,放到阻塞队列中。
    acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) {
    selfInterrupt();
}
//作用:构造节点以及加入到队列里面
//参数mode此时是Node.EXCLUSIVE,表示独占模式
private Node addWaiter(Node mode) {
    Node node = new Node(Thread.currentThread(), mode);
   	//快速加入
    Node pred = tail;
    if (pred != null) {
        node.prev = pred;
        //从CAS来设置加入到队列里面
        //这里node和tail进行了绑定
        if (compareAndSetTail(pred, node)) {
            pred.next = node;
            return node;
        }
    }
    // 说明 pred==null(队列是空的) 或者 CAS失败(有线程在竞争入队)
	//通过死循环的方法来保证节点的正确添加
    enq(node);
    return node;
}
// 采用自旋的方式入队
// 之前说过,到这个方法只有两种可能:等待队列为空,或者有线程竞争入队,
// 自旋在这边的语义是:CAS设置tail过程中,竞争一次竞争不到,我就多次竞争,总会排到的
private Node enq(final Node node) {
    for (;;) {
        Node t = tail;
        // 之前说过,队列为空也会进来这里
        if (t == null) { // Must initialize
            // 初始化head节点
            // 原来 head 和 tail 初始化的时候都是 null 的
            // 还是一步CAS,你懂的,现在可能是很多线程同时进来呢
            if (compareAndSetHead(new Node()))
                // 给后面用:这个时候head节点的waitStatus==0, 看new Node()构造方法就知道了

                // 这个时候有了head,但是tail还是null,设置一下,
                // 把tail指向head,放心,马上就有线程要来了,到时候tail就要被抢了
                // 注意:这里只是设置了tail=head,这里可没return哦,没有return,没有return
                // 所以,设置完了以后,继续for循环,下次就到下面的else分支了
                tail = head;
        } else {
            // 下面几行,和上一个方法 addWaiter 是一样的,
            // 只是这个套在无限循环里,反正就是将当前线程排到队尾,有线程竞争的话排不上重复排
            node.prev = t;
            if (compareAndSetTail(t, node)) {
                t.next = node;
                return t;
            }
        }
    }
}

● acquireQueued(Node, arg)) : 获取该节点指定数量的资源,通过自旋的方式直到获取成功,返回是该节点线程的中断状态。

  if (!tryAcquire(arg) 
        && acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) 
        selfInterrupt();
	// 下面这个方法,参数node,经过addWaiter(Node.EXCLUSIVE),此时已经进入阻塞队列
    // 注意一下:如果acquireQueued(addWaiter(Node.EXCLUSIVE), arg))返回true的话
    // 意味着上面这段代码将进入selfInterrupt(),所以正常情况下,下面应该返回false
    // 这个方法非常重要,应该说真正的线程挂起,然后被唤醒后去获取锁,都在这个方法里了
	final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {
                //获取p的前置节点
                final Node p = node.predecessor();
                //p == head 说明当前节点虽然进到了阻塞队列,但是是阻塞队列的第一个,因为它的前驱是head
                //注意,同步队列不包含head节点,head一般指的是占有锁的线程,head后面的才称为同步队列
                // 所以当前节点可以去试抢一下锁
                // 这里我们说一下,为什么可以去试试:
                // 首先,它是队头,这个是第一个条件,其次,当前的head有可能是刚刚初始化的node,
                // enq(node) 方法里面有提到,head是延时初始化的,而且new Node()的时候没有设置任何线程
                // 也就是说,当前的head不属于任何一个线程,所以作为队头,可以去试一试,
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return interrupted;
                }
                // 到这里,说明上面的if分支没有成功,要么当前node本来就不是对头
                // 要么就是tryAcquire(arg)没有抢赢别人
               	
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }
	// 会到这里就是没有抢到锁呗,这个方法说的是:"当前线程没有抢到锁,是否需要挂起当前线程?"
    // 第一个参数是前驱节点,第二个参数才是代表当前线程的节点
    private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
        int ws = pred.waitStatus;
        // 前驱节点的 waitStatus == -1 ,说明前驱节点状态正常,当前线程需要挂起,直接可以返回true
        if (ws == Node.SIGNAL)
            /*
             * This node has already set status asking a release
             * to signal it, so it can safely park.
             */
            return true;

        // 前驱节点 waitStatus大于0 ,之前说过,大于0 说明前驱节点取消了排队。
        // 这里需要知道这点:进入阻塞队列排队的线程会被挂起,而唤醒的操作是由前驱节点完成的。
        // 所以下面这块代码说的是将当前节点的prev指向waitStatus<=0的节点,
        // 简单说,就是为了找个好爹,因为你还得依赖它来唤醒呢,如果前驱节点取消了排队,
        // 找前驱节点的前驱节点做爹,往前遍历总能找到一个好爹的
        if (ws > 0) {
            /*
             * Predecessor was cancelled. Skip over predecessors and
             * indicate retry.
             */
            //找到一个标志位SIGNAL的节点,并将该节点的next指针指向新节点。
            do {
                node.prev = pred = pred.prev;
            } while (pred.waitStatus > 0);
            pred.next = node;
        } else {
            /*
             * waitStatus must be 0 or PROPAGATE.  Indicate that we
             * need a signal, but don't park yet.  Caller will need to
             * retry to make sure it cannot acquire before parking.
             */ 
            // 仔细想想,如果进入到这个分支意味着什么
            // 前驱节点的waitStatus不等于-1和1,那也就是只可能是0,-2,-3
            // 在我们前面的源码中,都没有看到有设置waitStatus的,所以每个新的node入队时,waitStatu都是0
            // 正常情况下,前驱节点是之前的 tail,那么它的 waitStatus 应该是 0
            // 用CAS将前驱节点的waitStatus设置为Node.SIGNAL(也就是-1)
            compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
        }
        // 这个方法返回 false,那么会再走一次 for 循序,
        //     然后再次进来此方法,此时会从第一个分支返回 true
        return false;
    }

    // private static boolean shouldParkAfterFailedAcquire(Node pred, Node node)
    // 这个方法结束根据返回值我们简单分析下:
    // 如果返回true, 说明前驱节点的waitStatus==-1,是正常情况,那么当前线程需要被挂起,等待以后被唤醒
    //        我们也说过,以后是被前驱节点唤醒,就等着前驱节点拿到锁,然后释放锁的时候叫你好了
    // 如果返回false, 说明当前不需要被挂起,为什么呢?往后看

    // 跳回到前面是这个方法
    // if (shouldParkAfterFailedAcquire(p, node) &&
    //                parkAndCheckInterrupt())
    //                interrupted = true;

    // 1. 如果shouldParkAfterFailedAcquire(p, node)返回true,
    // 那么需要执行parkAndCheckInterrupt():

    // 这个方法很简单,因为前面返回true,所以需要挂起线程,这个方法就是负责挂起线程的
    // 这里用了LockSupport.park(this)来挂起线程,然后就停在这里了,等待被唤醒=======
    private final boolean parkAndCheckInterrupt() {
        LockSupport.park(this);
        return Thread.interrupted();
    }
// 2. 接下来说说如果shouldParkAfterFailedAcquire(p, node)返回false的情况

// 仔细看shouldParkAfterFailedAcquire(p, node),我们可以发现,其实第一次进来的时候,一般都不会返回true的,原因很简单,前驱节点的waitStatus=-1是依赖于后继节点设置的。也就是说,我都还没给前驱设置-1呢,怎么可能是true呢,但是要看到,这个方法是套在循环里的,所以第二次进来的时候状态就是-1了。

// 解释下为什么shouldParkAfterFailedAcquire(p, node)返回false的时候不直接挂起线程:
// => 是为了应对在经过这个方法后,node已经是head的直接后继节点了。剩下的读者自己想想吧。

}

解锁操作

public void unlock() {
    sync.release(1);
}

public final boolean release(int arg) {
    // 判断有没有被释放
    if (tryRelease(arg)) {
        Node h = head;
        if (h != null && h.waitStatus != 0)
            unparkSuccessor(h);
        return true;
    }
    //表明该锁被重入了多次,当前并没有解锁
    return false;
}

// 回到ReentrantLock看tryRelease方法
protected final boolean tryRelease(int releases) {
    int c = getState() - releases;
    if (Thread.currentThread() != getExclusiveOwnerThread())
        throw new IllegalMonitorStateException();
    // 是否完全释放锁
    boolean free = false;
    // 其实就是重入的问题,如果c==0,也就是说没有嵌套锁了,可以释放了,否则还不能释放掉
    if (c == 0) {
        free = true;
        setExclusiveOwnerThread(null);
    }
    setState(c);
    return free;
}
// 唤醒后继节点
// 从上面调用处知道,参数node是head头结点
private void unparkSuccessor(Node node) {
    /*
     * If status is negative (i.e., possibly needing signal) try
     * to clear in anticipation of signalling.  It is OK if this
     * fails or if status is changed by waiting thread.
     */
    int ws = node.waitStatus;
    // 如果head节点当前waitStatus<0, 将其修改为0
    if (ws < 0)
        compareAndSetWaitStatus(node, ws, 0);
    /*
     * Thread to unpark is held in successor, which is normally
     * just the next node.  But if cancelled or apparently null,
     * traverse backwards from tail to find the actual
     * non-cancelled successor.
     */
    // 下面的代码就是唤醒后继节点,但是有可能后继节点取消了等待(waitStatus==1)
    // 从队尾往前找,找到waitStatus<=0的所有节点中排在最前面的
    Node s = node.next;
    if (s == null || s.waitStatus > 0) {
        s = null;
        // 从后往前找,仔细看代码,不必担心中间有节点取消(waitStatus==1)的情况
        for (Node t = tail; t != null && t != node; t = t.prev)
            if (t.waitStatus <= 0)
                s = t;
    }
    if (s != null)
        // 唤醒线程
        LockSupport.unpark(s.thread);
}

在并发环境下,加锁和解锁需要以下三个部件的协调:

  1. 锁状态。我们要知道锁是不是被别的线程占有了,这个就是 state 的作用,它为 0 的时候代表没有线程占有锁,可以去争抢这个锁,用 CAS 将 state 设为 1,如果 CAS 成功,说明抢到了锁,这样其他线程就抢不到了,如果锁重入的话,state进行 +1 就可以,解锁就是减 1,直到 state 又变为 0,代表释放锁,所以 lock() 和 unlock() 必须要配对啊。然后唤醒等待队列中的第一个线程,让其来占有锁。
  2. 线程的阻塞和解除阻塞。AQS 中采用了 LockSupport.park(thread) 来挂起线程,用 unpark 来唤醒线程。
  3. 阻塞队列。因为争抢锁的线程可能很多,但是只能有一个线程拿到锁,其他的线程都必须等待,这个时候就需要一个 queue 来管理这些线程,AQS 用的是一个 FIFO 的队列,就是一个链表,每个 node 都持有后继节点的引用。AQS 采用了 CLH 锁的变体来实现,感兴趣的读者可以参考这篇文章关于CLH的介绍,写得简单明了。

参考

https://javadoop.com/post/AbstractQueuedSynchronizer 非常棒的一篇文章

### Java JUC AQS 并发编程 抽象队列同步器 使用教程 源码解析 #### 什么是AQS? `AbstractQueuedSynchronizer`(简称AQS),作为Java并发包中的核心组件之一,提供了用于实现锁其他同步器的基础框架。它不仅简化了锁同步工具的创建过程,还提高了这些工具的工作效率[^2]。 #### 类图结构与工作原理 AQS的设计围绕着一个FIFO(先进先出)等待队列展开,该队列由多个节点组成,每个节点代表了一个正在等待获取资源的线程。每当有新的竞争者未能立即获得所需资源时,就会被构造成一个新的节点并加入到这个队列之中;而当现有持有者释放其持有的资源之后,则会从队头开始依次唤醒后续等待者去尝试占有资源[^5]。 #### 同步模式分类 为了适应不同场景下的需求,AQS支持两种主要类型的同步方式——独占式以及共享式: - **独占式**:一次只允许单个线程访问临界区,在这种情况下其他任何试图进入同一区域内的请求都将被迫挂起直到前序操作完成为止; - **共享式**:允许多个读取者同时存在而不互相干扰,只要不存在写入动作发生即可保持一致性安全性[^3]。 #### 自定义同步器的关键接口 对于想要利用AQS来构建特定行为逻辑的新类型而言,开发者通常需要重载以下几个抽象方法以适配具体的应用环境: - `tryAcquire(int arg)` `tryRelease(int arg)` - `tryAcquireShared(int arg)` 及 `tryReleaseShared(int arg)` - `isHeldExclusively()` 上述函数分别对应于独占/共享模式下对资源的操作控制流程,通过合理地覆盖它们可以轻松打造出满足业务特性要求的各种高级别同步原语[^1]。 ```java public class CustomSync extends AbstractQueuedSynchronizer { protected boolean tryAcquire(int acquires) { // 实现具体的独占式获取逻辑 return super.tryAcquire(acquires); } protected boolean tryRelease(int releases) { // 实现具体的独占式释放逻辑 return super.tryRelease(releases); } } ``` #### 队列管理机制详解 在实际运行过程中,AQS内部维护了一条双向链表形式的数据结构用来存储各个待处理的任务单元。每当新成员到来之时便会调用`enqueue()`方法将其追加至末端位置上形成完整的链条关系网状链接,并且借助CAS指令保证整个插入过程的安全可靠性质不受外界因素影响破坏[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值