使用LeNet网络进行多分类问题的实战
这里对cifar10数据集进行了切分,将训练集划分为训练集和验证集。定义了predict函数,可以使用自己下载的图片送入训练好的网络进行识别。
val_set,train_set = random_split(trainset,[40000,10000])
random_split()是pytorch内置的进行数据集划分函数
import torch
from PIL import Image
from torch.utils.data import random_split
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
import torch.nn.functional as F
import torch.optim as optim
class LeNet(nn.Module):
def __init__(self):
super(LeNet, self).__init__()
self.conv1 = nn.Conv2d(in_channels=3,out_channels=16,kernel_size=5,stride=1)
self.pool1 = nn.MaxPool2d(kernel_size=2,stride=2)
self.conv2 = nn.Conv2d(in_channels=16,out_channels=32,kernel_size=3,stride=1)
self.pool2 = nn.MaxPool2d(kernel_size=2,stride=2)
self.fc1 = nn.Linear(in_features=6*6*32,out_features=120)
self.fc2 = nn.Linear(120,84)
self.fc3 = nn.Linear(84,10)
def forward(self,x):
x = F.relu(self.conv1(x))
x = self.pool1(x)
x = F.relu(self.conv2(x))
x = self.pool2(x)
#print(x.shape)
x = x.view(-1,32*6*6)
#print(x.shape)
x = self.fc1(x)
x = self.fc2(x)
x = self.fc3(x)
return x
transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))])
trainset = torchvision.datasets.CIFAR10(root='./data',train=True,
download=False,transform=transform)
testset = torchvision.datasets.CIFAR10(root='./data',train=False,
download=False,transform=transform)
val_set,train_set = random_split(trainset,[40000,10000])#划分出验证集(10000),和训练集(40000)
#print(len(val_set))
#使用验证集进行训练
trainloader = torch.utils.data.DataLoader(dataset=val_set,batch_size=32,shuffle=True,num_workers=0,drop_last=True)
testloader = torch.utils.data.DataLoader(dataset=testset,batch_size=5000,num_workers=0)
val_data_iter = iter(testloader)
val_image, val_label = val_data_iter.next()
classes = ('plan','car','bird','cat','deer','dog','frog','horse','ship','truck')
model = LeNet()
loss_function = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(),lr=0.001)
def train():
for epoch in range(5):
run_loss = 0.0
for step,data in enumerate(trainloader):
inputs,labels = data
#print(inputs.size())
optimizer.zero_grad()
output = model(inputs)
loss = loss_function(output,labels)
loss.backward()
optimizer.step()
run_loss += loss.item()
if step % 500 == 499:
with torch.no_grad():
output = model(val_image)
predict_y = torch.argmax(output,dim=1)
#print(predict_y)
accuracy = torch.eq(predict_y,val_label).sum().item()/val_label.size(0)
print('[%d, %5d] train_loss: %.3f test_accuracy: %.3f' %
(epoch + 1, step + 1, run_loss / 500, accuracy))
run_loss = 0.0
print('finished train')
save_path = './LeNet.pth'
torch.save(model.state_dict(),save_path)
def predict():
transform = transforms.Compose(
[transforms.Resize((32, 32)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
net = LeNet()
net.load_state_dict(torch.load('Lenet.pth'))
im = Image.open('cat.jpg')
im = transform(im) # [C, H, W]
im = torch.unsqueeze(im, dim=0) # [N, C, H, W]
with torch.no_grad():
outputs = net(im)
predict = torch.max(outputs, dim=1)[1].data.numpy()
print(classes[int(predict)])
if __name__=='__main__':
#train()
predict()