【暑期每日一题】洛谷 P6530 [COCI 2015/2016 #1] AKCIJA

题目链接:P6530 [COCI 2015/2016 #1] AKCIJA - 洛谷

题目描述

书店搞活动了!

现在,您可以一次性购买 3 本书,而三本书中,您只需要付较贵的两本书的钱。

注意,这种优惠在一次性购买 1 或 2 本书时,不存在。

现在,您希望花最少的钱买下 n 本书。

请求出买下 n 本书需花的最少钱数。

输入格式

第一行一个整数 n。

接下来 n 行,一行一个整数 ci​,第 i 行表示第 i 本书的价格。

输出格式

仅一行一个整数,表示买下 n 本书需花的最少钱数。

输入输出样例

输入 #1

4
3
2
3
2 

输出 #1

8

输入 #2

6
6
4
5
5
5
5

输出 #2

21

说明/提示

【样例解释】
样例 1 解释

一起买价格为 3,2,2 的三本书,剩下的一本书单独买即可。

样例 2 解释

一起买价格为 6,4,5 的三本书,而后一起买价格为 5,5,5 的三本书。

【数据范围及限制】
  • 对于 50% 的数据,保证 n ≤ 2×10^3。
  • 对于 100% 的数据,保证 1 ≤ n ≤ 10^5,1 ≤ ci ​≤ 10^5。
【说明】

本题满分 80 分。

本题译自 Croatian Open Competition in Informatics 2015/2016 Contest #1 T2 AKCIJA。


AC code:

#include<iostream>
#include<algorithm>
#include<vector>


using namespace std;



int main()
{
    int n;
    cin>>n;
    vector<int> a(n);

    for(int i = 0 ; i < n ; i ++)
        cin>>a[i];

    int res = 0;
    if(n < 3)
    {
        for(int i = 0 ; i < n ; i ++)
            res += a[i];
        cout<<res;
        return 0;
    }
    
    sort(a.begin(),a.end(),greater<int>());

    for(int i = 0 ; i < n ; i += 3)
    {
        if(i < n - 1)
            res += (a[i] + a[i + 1]);
        if(i == n - 1)
            res += a[i];
    }
    cout<<res;
    
    
    return 0;
}

### 回答1: 题目描述: Eko 有一排树,每棵树的高度不同。他想要砍掉一些树,使得剩下的树的高度都相同。他希望砍掉的树的高度尽可能地少,你能帮他算出最少要砍掉多少棵树吗? 输入格式: 第一行包含两个整数 N 和 M,分别表示树的数量和 Eko 希望的树的高度。 第二行包含 N 个整数,表示每棵树的高度。 输出格式: 输出一个整数,表示最少要砍掉的树的数量。 输入样例: 9 5 2 3 4 7 8 9 10 11 12 输出样例: 3 解题思路: 二分答案 首先,我们可以发现,如果我们知道了 Eko 希望的树的高度,那么我们就可以计算出砍掉多少棵树。 具体来说,我们可以遍历每棵树,如果它的高度大于 Eko 希望的树的高度,那么就将它砍掉,否则就保留它。 然后,我们可以使用二分答案的方法来确定 Eko 希望的树的高度。 具体来说,我们可以将树的高度排序,然后二分一个可能的 Eko 希望的树的高度,然后计算砍掉多少棵树,如果砍掉的树的数量小于等于 M,那么说明 Eko 希望的树的高度可能更小,否则说明 Eko 希望的树的高度可能更大。 最后,我们可以得到最少要砍掉的树的数量。 时间复杂度:O(NlogN)。 参考代码: ### 回答2: 这道题目是一道模拟题,需要模拟机器人的移动过程以及得出最终机器人的位置和朝向。首先需要明确机器人的起始位置以及朝向,其次需要读取输入的指令,根据指令逐步移动机器人,并顺便判断是否会越界或者碰到障碍物。最后输出最终机器人的位置和朝向。 在本题中,需要按照从西向东、从北向南、从东向西、从南向北的顺序判断机器人的朝向。为了方便表述,我把机器人的朝向表示为0、1、2、3,分别代表从西向东、从北向南、从东向西、从南向北。 具体地说,机器人按照指令逐步移动时需要分情况讨论,比如: 1.当前机器人朝向为0,即从西向东: 若指令为F,则x坐标+1,但需要判断是否越界或者碰到障碍物。 若指令为L,则朝向变为3。 若指令为R,则朝向变为1。 2.当前机器人朝向为1,即从北向南: 若指令为F,则y坐标-1,但需要判断是否越界或者碰到障碍物。 若指令为L,则朝向变为0。 若指令为R,则朝向变为2。 3.当前机器人朝向为2,即从东向西: 若指令为F,则x坐标-1,但需要判断是否越界或者碰到障碍物。 若指令为L,则朝向变为1。 若指令为R,则朝向变为3。 4.当前机器人朝向为3,即从南向北: 若指令为F,则y坐标+1,但需要判断是否越界或者碰到障碍物。 若指令为L,则朝向变为2。 若指令为R,则朝向变为0。 最后输出最终机器人的位置和朝向即可。 在编写程序时需要注意判断边界和障碍物,以及要用scanf读取输入,不要用C++的cin,否则会TLE。此外,由于本题没有给出边界和障碍物,需要自己设置。最后,本题的思路不难,但是需要认真仔细地处理各种情况,多测试几组数据找出程序的漏洞,这样才能通过本题。 ### 回答3: 本题为一道组合数学题,需要运用排列组合知识进行分析。 题目要求将n个方块填入3*3的网格中,每个方块可以是红色、绿色或蓝色的一个。要求每行、每列和对角线上的方块颜色都不相同。求方案总数。 首先考虑对第一行进行颜色选取。由于第一行每个位置的颜色都不影响其他行和列,故第一行的颜色选取不影响总方案数。所以假设第一行颜色已经确定,考虑第二行的颜色选取。第二行中各位置的颜色受到第一行的限制,只有第一行某位置颜色的补集才能选取。例如,若第一行第一个位置是红色,那么第二行第一个位置不能选取红色。因为每行颜色不能相同,所以第二行受到第一行限制的位置只有3个。第三行同理,由于前两行的限制,只有2个位置可选。做完颜色选取后,再将每行的方块进行排列,此时我们可以使用错排公式得到方案数: D(n) = n!(1 - 1/1! + 1/2! - 1/3! + ... + (-1)^(n)/n!) 最终,方案总数即为每个第一行颜色选取方法下的错排方案数之和。按题意枚举第一行的颜色,就可以得到最终的方案总数了。 总结一下,本题所需要的知识点为:错排公式、颜色限制对组合数的影响、暴力枚举法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值