基于pytoch卷积神经网络水质图像分类实战

具体怎么学习pytorch,看b站刘二大人的视频。

完整代码:

import numpy as np
import os
from PIL import Image
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader, Subset
# 设置随机种子
torch.manual_seed(42)
np.random.seed(42)
'''https://zhuanlan.zhihu.com/p/156926543'''
# 定义图片目录
image_dir = 'images'

# 初始化图片路径列表
img_list = []

# 遍历指定目录及其子目录中的所有文件
for parent, _, filenames in os.walk(image_dir):
    for filename in filenames:
        # 拼接文件的完整路径
        filename_path = os.path.join(parent, filename)
        img_list.append(filename_path)

# 初始化图像张量列表和标签列表
image_tensors = []
y_list = []

for image_path in img_list:
    # 提取标签 (假设标签是文件名的第一个字符)
    label = int(os.path.basename(image_path)[0])
    y_list.append(label)

    # 打开图像
    img = Image.open(image_path)

    # 获取图像尺寸
    width, height = img.siz
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

努力学习各种软件

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值