前缀,后缀表达式(逆波兰表达式),中缀表达式转为对应的后缀表达式,逆波兰计算器的实现(java)

1.前缀表达式(波兰表达式)

1.前缀表达式的定义

前缀表达式的运算符位于操作符之前
例如:(3+4)*5-6对应的前缀表达式就是 - * + 3 4 5 6

2.前缀表达式的计算机求值
从右至左扫描表达式,遇到数字时就将数字压入堆栈,遇到运算符时弹出栈顶的两个数,用运算符对它们做相应的计算(栈顶元素和次顶元素),并将结果入栈;重复上述过程知道表达式最左端,最后运算得出的值即为表达式的结果

举例:
(3+4)*5-6对应的前缀表达式就是 - * + 3 4 5 6,针对前缀表达式求值步骤如下:

  1. 从左至右扫描,将6,5,4,3压入堆栈
  2. 遇到+运算符,弹出3和4(3为栈顶元素,4为次顶元素),计算出3+4的值,得7,再将7入栈
  3. 接下来是*运算符,弹出7和5,得35,将35入栈
  4. 最后是-运算符,计算35-6,得29,由此得出最终结果

中缀表达式就是我们常见的表达式,
比如:(3+4)*5-6

2.后缀表达式(逆波兰表达式)

后缀表达式定义:运算符位于操作符之后
举例:
(3+4)*5-6对应的后缀表达式就是 3 4 + 5 * 6 -
在这里插入图片描述
后缀表达式的计算机求值
从左至右扫描表达式,遇到数字将数字压入栈中,遇到运算符时弹出栈顶的两个数,用运算符对它们做相应的计算(次顶元素和栈顶元素),并将结果入栈;重复上述过程知道表达式最右端,最后运算得出的值即为表达式的结果

例如:
(3+4)*5-6对应的前缀表达式就是 - * + 3 4 5 6,针对前缀表达式求值步骤如下:

  1. 从左到右扫描,将3和4压入栈中
  2. 遇到+运算符,弹出4和3(4为栈顶元素,3为次顶元素),计算出3+4的值,得7,再将7入栈
  3. 将5入栈
  4. 接下来是运算符,由此弹出5和7,计算75=35,将35入栈
  5. 将6入栈
  6. 最后是 - 运算符,计算出35-6的值29,得出最终结果

3.完成一个简易版的逆波兰计算器

要求:
输入一个逆波兰表达式(后缀表达式),使用栈(stack),计算其结果

思路分析如上
后缀表达式的计算机求值

代码实现:

	//完成对逆波兰表达式的运算
	/*
	 * 1)从左至右扫描,将3和4压入堆栈;
		2)遇到+运算符,因此弹出4和3(4为栈顶元素,3为次顶元素),计算出3+4的值,得7,再将7入栈;
		3)将5入栈;
		4)接下来是×运算符,因此弹出5和7,计算出7×5=35,将35入栈;
		5)将6入栈;
		6)最后是-运算符,计算出35-6的值,即29,由此得出最终结果
	 */
	
	public static int calculate(List<String> ls) {
		// 创建栈, 只需要一个栈即可
		Stack<String> stack = new Stack<String>();
		// 遍历 ls
		for (String item : ls) {
			// 这里使用正则表达式来取出数
			if (item.matches("\\d+")) { // 匹配的是多位数
				// 入栈
				stack.push(item);
			} else {
				// pop出两个数,并运算, 再入栈
				int num2 = Integer.parseInt(stack.pop());
				int num1 = Integer.parseInt(stack.pop());
				int res = 0;
				if (item.equals("+")) {
					res = num1 + num2;
				} else if (item.equals("-")) {
					res = num1 - num2;
				} else if (item.equals("*")) {
					res = num1 * num2;
				} else if (item.equals("/")) {
					res = num1 / num2;
				} else {
					throw new RuntimeException("运算符有误");
				}
				//把res 入栈
				stack.push("" + res);
			}
			
		}
		//最后留在stack中的数据是运算结果
		return Integer.parseInt(stack.pop());
	}

}

4.中缀表达式转为后缀表达式

中缀表达式转后缀表达式思路分析

1.初始化两个栈:运算符栈s1和储存中间结果的栈s2
2.从左至右扫描中缀表达式
3.遇到操作数,将其压入s2
4.遇到运算符,比较其与s1栈顶运算符的优先级

  1. 如果s1为空,或栈顶运算符为左括号“(”,直接将此运算符入栈
  2. 否则,若优先级比栈顶运算符的高,也将运算符入s1
  3. 否则,将s1栈顶的运算符弹出并压入到s2中,再次转到(4.1)与s1中新的运算符相比较

5.遇到括号时

  1. 如果是左括号“(”,则直接压入s1
  2. 如果是右括号“)”则依次弹出s1栈顶的运算符,并压入s2,直到遇到左括号为止,此时将这一对括号丢弃

6.重复步骤2~5,直到表达式的最右边
7.将s1中剩余的运算符依次弹出并压入s2
8.依次弹出s2中的元素并输出,结果的逆序即为中缀表达式对应的后缀表达式

举例说明:
将中缀表达式“1+((2+3)*4)-5”转为后缀表达式的过程如下

举例
其结果为123+4*+5-

5.完整逆波兰计算器的实现

代码实现:

import java.util.ArrayList;
import java.util.List;
import java.util.Stack;

public class PolandNotation {

	public static void main(String[] args) {
		//完成将一个中缀表达式转成后缀表达式的功能
		//说明
		//1. 1+((2+3)×4)-5 => 转成  1 2 3 + 4 × + 5 –
		//2. 因为直接对str 进行操作,不方便,因此 先将  "1+((2+3)×4)-5" =》 中缀的表达式对应的List
		//   即 "1+((2+3)×4)-5" => ArrayList [1,+,(,(,2,+,3,),*,4,),-,5]
		//3. 将得到的中缀表达式对应的List => 后缀表达式对应的List
		//   即 ArrayList [1,+,(,(,2,+,3,),*,4,),-,5]  =》 ArrayList [1,2,3,+,4,*,+,5,–]
		
		String expression = "1+((2+3)*4)-5";//注意表达式 
		List<String> infixExpressionList = toInfixExpressionList(expression);
		System.out.println("中缀表达式对应的List=" + infixExpressionList); 
		// ArrayList [1,+,(,(,2,+,3,),*,4,),-,5]
		List<String> suffixExpreesionList = parseSuffixExpreesionList(infixExpressionList);
		System.out.println("后缀表达式对应的List" + suffixExpreesionList); 
		//ArrayList [1,2,3,+,4,*,+,5,–] 
		
		System.out.printf("expression=%d", calculate(suffixExpreesionList)); 
		
	}
	//即 ArrayList [1,+,(,(,2,+,3,),*,4,),-,5]  =》 ArrayList [1,2,3,+,4,*,+,5,–]
	//方法:将得到的中缀表达式对应的List => 后缀表达式对应的List
	public static List<String> parseSuffixExpreesionList(List<String> ls) {
		//定义两个栈
		Stack<String> s1 = new Stack<String>(); // 符号栈
		//说明:因为s2 这个栈,在整个转换过程中,没有pop操作,而且后面我们还需要逆序输出
		//因此比较麻烦,这里我们就不用 Stack<String> 直接使用 List<String> s2
		//Stack<String> s2 = new Stack<String>(); // 储存中间结果的栈s2
		List<String> s2 = new ArrayList<String>(); // 储存中间结果的Lists2
		
		//遍历ls
		for(String item: ls) {
			//如果是一个数,加入s2
			if(item.matches("\\d+")) {
				s2.add(item);
			} else if (item.equals("(")) {
				s1.push(item);
			} else if (item.equals(")")) {
				//如果是右括号“)”,则依次弹出s1栈顶的运算符,并压入s2,
				//直到遇到左括号为止,此时将这一对括号丢弃
				while(!s1.peek().equals("(")) {
					s2.add(s1.pop());
				}
				s1.pop();//!!! 将 ( 弹出 s1栈, 消除小括号
			} else {
				//当item的优先级小于等于s1栈顶运算符, 
				//将s1栈顶的运算符弹出并加入到s2中,
				//再次转到(4.1)与s1中新的栈顶运算符相比较
				//问题:我们缺少一个比较优先级高低的方法
				while(s1.size() != 0 && Operation.getValue(s1.peek()) >= Operation.getValue(item) ) {
					s2.add(s1.pop());
				}
				//还需要将item压入栈
				s1.push(item);
			}
		}
		
		//将s1中剩余的运算符依次弹出并加入s2
		while(s1.size() != 0) {
			s2.add(s1.pop());
		}
        //注意因为是存放到List, 
        //因此按顺序输出就是对应的后缀表达式对应的List
		return s2; 
		
	}
	
	//方法:将 中缀表达式转成对应的List
	//  s="1+((2+3)×4)-5";
	public static List<String> toInfixExpressionList(String s) {
		//定义一个List,存放中缀表达式 对应的内容
		List<String> ls = new ArrayList<String>();
		int i = 0; //这是一个指针,用于遍历 中缀表达式字符串
		String str; // 对多位数的拼接
		char c; // 每遍历到一个字符,就放入到c
		do {
			//如果c是一个非数字,我需要加入到ls
			if((c=s.charAt(i)) < 48 ||  (c=s.charAt(i)) > 57) {//ASCII码
				ls.add("" + c);
				i++; //i需要后移
			} else { //如果是一个数,需要考虑多位数
				str = ""; //先将str 置成"" '0'[48]->'9'[57]
				while(i < s.length() && (c=s.charAt(i)) >= 48 && (c=s.charAt(i)) <= 57) {
					str += c;//拼接
					i++;
				}
				ls.add(str);
			}
		}while(i < s.length());
		return ls;//返回
	}
	
	//将一个逆波兰表达式, 依次将数据和运算符 放入到 ArrayList中
	public static List<String> getListString(String suffixExpression) {
		//将 suffixExpression 分割,以空格来分割
		String[] split = suffixExpression.split(" ");
		List<String> list = new ArrayList<String>();
		for(String ele: split) {
			list.add(ele);
		}
		return list;
		
	}
	
	//完成对逆波兰表达式的运算
	/*
	 * 1)从左至右扫描,将3和4压入堆栈;
		2)遇到+运算符,因此弹出4和3(4为栈顶元素,3为次顶元素),
		计算出3+4的值,得7,再将7入栈;
		3)将5入栈;
		4)接下来是×运算符,因此弹出5和7,计算出7×5=35,将35入栈;
		5)将6入栈;
		6)最后是-运算符,计算出35-6的值,即29,由此得出最终结果
	 */
	
	public static int calculate(List<String> ls) {
		// 创建栈, 只需要一个栈即可
		Stack<String> stack = new Stack<String>();
		// 遍历 ls
		for (String item : ls) {
			// 这里使用正则表达式来取出数
			if (item.matches("\\d+")) { // 匹配的是多位数
				// 入栈
				stack.push(item);
			} else {
				// pop出两个数,并运算, 再入栈
				int num2 = Integer.parseInt(stack.pop());
				int num1 = Integer.parseInt(stack.pop());
				int res = 0;
				if (item.equals("+")) {
					res = num1 + num2;
				} else if (item.equals("-")) {
					res = num1 - num2;
				} else if (item.equals("*")) {
					res = num1 * num2;
				} else if (item.equals("/")) {
					res = num1 / num2;
				} else {
					throw new RuntimeException("运算符有误");
				}
				//把res 入栈
				stack.push("" + res);
			}
			
		}
		//最后留在stack中的数据是运算结果
		return Integer.parseInt(stack.pop());
	}

}

//编写一个类 Operation 可以返回一个运算符 对应的优先级
class Operation {
	private static int ADD = 1;
	private static int SUB = 1;
	private static int MUL = 2;
	private static int DIV = 2;
	
	//写一个方法,返回对应的优先级数字
	public static int getValue(String operation) {
		int result = 0;
		switch (operation) {
		case "+":
			result = ADD;
			break;
		case "-":
			result = SUB;
			break;
		case "*":
			result = MUL;
			break;
		case "/":
			result = DIV;
			break;
		default:
			System.out.println("不存在该运算符" + operation);
			break;
		}
		return result;
	}
	
}

本篇博客参考内容

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值