一、学习目标
-
使用数据集绘制柱状图和折线图,
-
使用时间序列数据构建历史平移特征和窗口统计特征,
-
使用lightgbm模型进行训练并预测。
二、 GBDT和LightGBM
GBDT (Gradient Boosting Decision Tree) 是机器学习中一个长盛不衰的模型,其主要思想是利用弱分类器(决策树)迭代训练以得到最优模型,该模型具有训练效果好、不易过拟合等优点。
GBDT不仅在工业界应用广泛,通常被用于多分类、点击率预测、搜索排序等任务;在各种数据挖掘竞赛中也是致命武器,据统计Kaggle上的比赛有一半以上的冠军方案都是基于GBDT。
LightGBM(Light Gradient Boosting Machine)是一个实现GBDT算法的框架,支持高效率的并行训练,并且具有更快的训练速度、更低的内存消耗、更好的准确率、支持分布式可以快速处理海量数据等优点。
LightGBM 框架中还包括随机森林和逻辑回归等模型。通常应用于二分类、多分类和排序等场景。
例如:在个性化商品推荐场景中,通常需要做点击预估模型。使用用户过往的行为(点击、曝光未点击、购买等)作为训练数据,来预测用户点击或购买的概率。根据用户行为和用户属性提取一些特征,包括:
-
类别特征(Categorical Feature):字符串类型,如性别(男/女)。
-
物品类型:服饰、玩具和电子等。
-
数值特征(Numrical Feature):整型或浮点型,如用户活跃度或商品价格等。
三、代码
1、所需的模块
import numpy as np
import pandas as pd
import lightgbm as lgb
from sklearn.metrics import mean_squared_log_error, mean_absolute_error, mean_squared_error
import tqdm
import sys
import os
import gc
import argparse
import warnings
warnings.filterwarnings('ignore')
会出现问题
解决问题
pip install