一、数据加密(encrypt_data)
示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。
二、找到加密函数
通过单步调试,进入加密函数
找到函数o和函数a.a.decode,函数o有六个参数,其中五个参数为固定值,开始扣js代码
进入浏览器js代码调试,缺啥补啥
扣完js代码解密成功,拿到数据
三.使用execjs库调用js进行解密数据获取
xx.py
import requests
import execjs
with open('encrypt_data.js', 'r', encoding='utf-8') as f:
js_code = f.read()
headers = {
"Accept": "application/json, text/plain, */*",
"Accept-Language": "zh-CN,zh;q=0.9",
"Connection": "keep-alive",
"Content-Type": "application/x-www-form-urlencoded",
"Origin": "https://www.qimingpian.com",
"Sec-Fetch-Dest": "empty",
"Sec-Fetch-Mode": "cors",
"Sec-Fetch-Site": "cross-site",
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36",
"sec-ch-ua": "\"Not_A Brand\";v=\"8\", \"Chromium\";v=\"120\", \"Google Chrome\";v=\"120\"",
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": "\"Windows\""
}
url = "https://vipapi.qimingpian.cn/search/recommendedItemList"
data = {
"page": "1",
"num": "20",
"sys": "vip",
"keywords": "",
"unionid": ""
}
response = requests.post(url, headers=headers, data=data)
encrypt_data = response.json()['encrypt_data']
plain_data = execjs.compile(js_code).call('decrypt_data', encrypt_data)
print(plain_data)
xx.js
function o(e, t, i, n, a, o) {
var s, c, r, l, d, u, h, p, f, m, v, g, y, b, C = new Array(16843776,0,65536,16843780,16842756,66564,4,65536,1024,16843776,16843780,1024,16778244,16842756,16777216,4,1028,16778240,16778240,66560,66560,16842752,16842752,16778244,65540,16777220,16777220,65540,0,1028,66564,16777216,65536,16843780,4,16842752,16843776,16777216,16777216,1024,16842756,65536,66560,16777220,1024,4,16778244,66564,16843780,65540,16842752,16778244,16777220,1028,66564,16843776,1028,16778240,16778240,0,65540,66560,0,16842756), _ = new Array(-2146402272,-2147450880,32768,1081376,1048576,32,-2146435040,-2147450848,-2147483616,-2146402272,-2146402304,-2147483648,-2147450880,1048576,32,-2146435040,1081344,1048608,-2147450848,0,-2147483648,32768,1081376,-2146435072,1048608,-2147483616,0,1081344,32800,-2146402304,-2146435072,32800,0,1081376,-2146435040,1048576,-2147450848,-2146435072,-2146402304,32768,-2146435072,-2147450880,32,-2146402272,1081376,32,32768,-2147483648,32800,-2146402304,1048576,-2147483616,1048608,-2147450848,-2147483616,1048608,1081344,0,-2147450880,32800,-2147483648,-2146435040,-2146402272,1081344), w = new Array(520,134349312,0,134348808,134218240,0,131592,134218240,131080,134217736,134217736,131072,134349320,131080,134348800,520,134217728,8,134349312,512,131584,134348800,134348808,131592,134218248,131584,131072,134218248,8,134349320,512,134217728,134349312,134217728,131080,520,131072,134349312,134218240,0,512,131080,134349320,134218240,134217736,512,0,134348808,134218248,131072,134217728,134349320,8,131592,131584,134217736,134348800,134218248,520,134348800,131592,8,134348808,131584), k = new Array(8396801,8321,8321,128,8396928,8388737,8388609,8193,0,8396800,8396800,8396929,129,0,8388736,8388609,1,8192,8388608,8396801,128,8388608,8193,8320,8388737,1,8320,8388736,8192,8396928,8396929,129,8388736,8388609,8396800,8396929,129,0,0,8396800,8320,8388736,8388737,1,8396801,8321,8321,128,8396929,129,1,8192,8388609,8193,8396928,8388737,8193,8320,8388608,8396801,128,8388608,8192,8396928), x = new Array(256,34078976,34078720,1107296512,524288,256,1073741824,34078720,1074266368,524288,33554688,1074266368,1107296512,1107820544,524544,1073741824,33554432,1074266112,1074266112,0,1073742080,1107820800,1107820800,33554688,1107820544,1073742080,0,1107296256,34078976,33554432,1107296256,524544,524288,1107296512,256,33554432,1073741824,34078720,1107296512,1074266368,33554688,1073741824,1107820544,34078976,1074266368,256,33554432,1107820544,1107820800,524544,1107296256,1107820800,34078720,0,1074266112,1107296256,524544,33554688,1073742080,524288,0,1074266112,34078976,1073742080), T = new Array(536870928,541065216,16384,541081616,541065216,16,541081616,4194304,536887296,4210704,4194304,536870928,4194320,536887296,536870912,16400,0,4194320,536887312,16384,4210688,536887312,16,541065232,541065232,0,4210704,541081600,16400,4210688,541081600,536870912,536887296,16,541065232,4210688,541081616,4194304,16400,536870928,4194304,536887296,536870912,16400,536870928,541081616,4210688,541065216,4210704,541081600,0,541065232,16,16384,541065216,4210704,16384,4194320,536887312,0,541081600,536870912,4194320,536887312), A = new Array(2097152,69206018,67110914,0,2048,67110914,2099202,69208064,69208066,2097152,0,67108866,2,67108864,69206018,2050,67110912,2099202,2097154,67110912,67108866,69206016,69208064,2097154,69206016,2048,2050,69208066,2099200,2,67108864,2099200,67108864,2099200,2097152,67110914,67110914,69206018,69206018,2,2097154,67108864,67110912,2097152,69208064,2050,2099202,69208064,2050,67108866,69208066,69206016,2099200,0,2,69208066,0,2099202,69206016,2048,67108866,67110912,2048,2097154), N = new Array(268439616,4096,262144,268701760,268435456,268439616,64,268435456,262208,268697600,268701760,266240,268701696,266304,4096,64,268697600,268435520,268439552,4160,266240,262208,268697664,268701696,4160,0,0,268697664,268435520,268439552,266304,262144,266304,262144,268701696,4096,64,268697664,4096,266304,268439552,64,268435520,268697600,268697664,268435456,262144,268439616,0,268701760,262208,268435520,268697600,268439552,268439616,0,268701760,266240,266240,4160,4160,262208,268435456,268701696), $ = function(e) {
for (var t, i, n, a = new Array(0,4,536870912,536870916,65536,65540,536936448,536936452,512,516,536871424,536871428,66048,66052,536936960,536936964), o = new Array(0,1,1048576,1048577,67108864,67108865,68157440,68157441,256,257,1048832,1048833,67109120,67109121,68157696,68157697), s = new Array(0,8,2048,2056,16777216,16777224,16779264,16779272,0,8,2048,2056,16777216,16777224,16779264,16779272), c = new Array(0,2097152,134217728,136314880,8192,2105344,134225920,136323072,131072,2228224,134348800,136445952,139264,2236416,134356992,136454144), r = new Array(0,262144,16,262160,0,262144,16,262160,4096,266240,4112,266256,4096,266240,4112,266256), l = new Array(0,1024,32,1056,0,1024,32,1056,33554432,33555456,33554464,33555488,33554432,33555456,33554464,33555488), d = new Array(0,268435456,524288,268959744,2,268435458,524290,268959746,0,268435456,524288,268959744,2,268435458,524290,268959746), u = new Array(0,65536,2048,67584,536870912,536936448,536872960,536938496,131072,196608,133120,198656,537001984,537067520,537004032,537069568), h = new Array(0,262144,0,262144,2,262146,2,262146,33554432,33816576,33554432,33816576,33554434,33816578,33554434,33816578), p = new Array(0,268435456,8,268435464,0,268435456,8,268435464,1024,268436480,1032,268436488,1024,268436480,1032,268436488), f = new Array(0,32,0,32,1048576,1048608,1048576,1048608,8192,8224,8192,8224,1056768,1056800,1056768,1056800), m = new Array(0,16777216,512,16777728,2097152,18874368,2097664,18874880,67108864,83886080,67109376,83886592,69206016,85983232,69206528,85983744), v = new Array(0,4096,134217728,134221824,524288,528384,134742016,134746112,16,4112,134217744,134221840,524304,528400,134742032,134746128), g = new Array(0,4,256,260,0,4,256,260,1,5,257,261,1,5,257,261), y = e.length > 8 ? 3 : 1, b = new Array(32 * y), C = new Array(0,0,1,1,1,1,1,1,0,1,1,1,1,1,1,0), _ = 0, w = 0, k = 0; k < y; k++) {
var x = e.charCodeAt(_++) << 24 | e.charCodeAt(_++) << 16 | e.charCodeAt(_++) << 8 | e.charCodeAt(_++)
, T = e.charCodeAt(_++) << 24 | e.charCodeAt(_++) << 16 | e.charCodeAt(_++) << 8 | e.charCodeAt(_++);
x ^= (n = 252645135 & (x >>> 4 ^ T)) << 4,
x ^= n = 65535 & ((T ^= n) >>> -16 ^ x),
x ^= (n = 858993459 & (x >>> 2 ^ (T ^= n << -16))) << 2,
x ^= n = 65535 & ((T ^= n) >>> -16 ^ x),
x ^= (n = 1431655765 & (x >>> 1 ^ (T ^= n << -16))) << 1,
x ^= n = 16711935 & ((T ^= n) >>> 8 ^ x),
n = (x ^= (n = 1431655765 & (x >>> 1 ^ (T ^= n << 8))) << 1) << 8 | (T ^= n) >>> 20 & 240,
x = T << 24 | T << 8 & 16711680 | T >>> 8 & 65280 | T >>> 24 & 240,
T = n;
for (var A = 0; A < C.length; A++)
C[A] ? (x = x << 2 | x >>> 26,
T = T << 2 | T >>> 26) : (x = x << 1 | x >>> 27,
T = T << 1 | T >>> 27),
T &= -15,
t = a[(x &= -15) >>> 28] | o[x >>> 24 & 15] | s[x >>> 20 & 15] | c[x >>> 16 & 15] | r[x >>> 12 & 15] | l[x >>> 8 & 15] | d[x >>> 4 & 15],
i = u[T >>> 28] | h[T >>> 24 & 15] | p[T >>> 20 & 15] | f[T >>> 16 & 15] | m[T >>> 12 & 15] | v[T >>> 8 & 15] | g[T >>> 4 & 15],
n = 65535 & (i >>> 16 ^ t),
b[w++] = t ^ n,
b[w++] = i ^ n << 16
}
return b
}(e), L = 0, S = t.length, z = 0, I = 32 == $.length ? 3 : 9;
p = 3 == I ? i ? new Array(0,32,2) : new Array(30,-2,-2) : i ? new Array(0,32,2,62,30,-2,64,96,2) : new Array(94,62,-2,32,64,2,30,-2,-2),
2 == o ? t += " " : 1 == o ? i && (r = 8 - S % 8,
t += String.fromCharCode(r, r, r, r, r, r, r, r),
8 === r && (S += 8)) : o || (t += "\0\0\0\0\0\0\0\0");
var B = ""
, F = "";
for (1 == n && (f = a.charCodeAt(L++) << 24 | a.charCodeAt(L++) << 16 | a.charCodeAt(L++) << 8 | a.charCodeAt(L++),
v = a.charCodeAt(L++) << 24 | a.charCodeAt(L++) << 16 | a.charCodeAt(L++) << 8 | a.charCodeAt(L++),
L = 0); L < S; ) {
for (u = t.charCodeAt(L++) << 24 | t.charCodeAt(L++) << 16 | t.charCodeAt(L++) << 8 | t.charCodeAt(L++),
h = t.charCodeAt(L++) << 24 | t.charCodeAt(L++) << 16 | t.charCodeAt(L++) << 8 | t.charCodeAt(L++),
1 == n && (i ? (u ^= f,
h ^= v) : (m = f,
g = v,
f = u,
v = h)),
u ^= (r = 252645135 & (u >>> 4 ^ h)) << 4,
u ^= (r = 65535 & (u >>> 16 ^ (h ^= r))) << 16,
u ^= r = 858993459 & ((h ^= r) >>> 2 ^ u),
u ^= r = 16711935 & ((h ^= r << 2) >>> 8 ^ u),
u = (u ^= (r = 1431655765 & (u >>> 1 ^ (h ^= r << 8))) << 1) << 1 | u >>> 31,
h = (h ^= r) << 1 | h >>> 31,
c = 0; c < I; c += 3) {
for (y = p[c + 1],
b = p[c + 2],
s = p[c]; s != y; s += b)
l = h ^ $[s],
d = (h >>> 4 | h << 28) ^ $[s + 1],
r = u,
u = h,
h = r ^ (_[l >>> 24 & 63] | k[l >>> 16 & 63] | T[l >>> 8 & 63] | N[63 & l] | C[d >>> 24 & 63] | w[d >>> 16 & 63] | x[d >>> 8 & 63] | A[63 & d]);
r = u,
u = h,
h = r
}
h = h >>> 1 | h << 31,
h ^= r = 1431655765 & ((u = u >>> 1 | u << 31) >>> 1 ^ h),
h ^= (r = 16711935 & (h >>> 8 ^ (u ^= r << 1))) << 8,
h ^= (r = 858993459 & (h >>> 2 ^ (u ^= r))) << 2,
h ^= r = 65535 & ((u ^= r) >>> 16 ^ h),
h ^= r = 252645135 & ((u ^= r << 16) >>> 4 ^ h),
u ^= r << 4,
1 == n && (i ? (f = u,
v = h) : (u ^= m,
h ^= g)),
F += String.fromCharCode(u >>> 24, u >>> 16 & 255, u >>> 8 & 255, 255 & u, h >>> 24, h >>> 16 & 255, h >>> 8 & 255, 255 & h),
512 == (z += 8) && (B += F,
F = "",
z = 0)
}
if (B = (B += F).replace(/\0*$/g, ""),
!i) {
if (1 === o) {
var j = 0;
(S = B.length) && (j = B.charCodeAt(S - 1)),
j <= 8 && (B = B.substring(0, S - j))
}
B = decodeURIComponent(escape(B))
}
return B
}
function decode(t) {
var e = (t = String(t).replace(/[\t\n\f\r ]/g, "")).length;
e % 4 == 0 && (e = (t = t.replace(/==?$/, "")).length),
(e % 4 == 1 || /[^+a-zA-Z0-9/]/.test(t)) && u("Invalid character: the string to be decoded is not correctly encoded.");
for (var n, r, i = 0, o = "", a = -1; ++a < e; )
r = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/".indexOf(t.charAt(a)),
n = i % 4 ? 64 * n + r : r,
i++ % 4 && (o += String.fromCharCode(255 & n >> (-2 * i & 6)));
return o
}
function s(e) {
return JSON.parse(o("5e5062e82f15fe4ca9d24bc5", decode(encrypt_data), 0, 0, "012345677890123", 1))
}
encrypt_data = 'bOnqtWHqs4u1IxoO8vx5wDyy363412rQhBrBdTf6e8oK6hgxZ1bmRLfvcs0VsEsKnG+iTkqBWJQvcNAI0qM2PcNwvJwDihK/Gj4qwhR4PT55MMrJEmHbIIcgGuX/h1nefsXfqMTHJthLICRoo5NeGdXttX8nN2xfeR39H7A7ylxH1yWMmg9EZ6U9c86O/RilF1ocit43A9m7U0Y5FhX+7edlt2qbkd9164TnNITtSSkJw77+5NEOIRym255X+Eo1C57ceW76ZTjwX/aKz5WgnR3Y1pxdOfzx2FyPLNcqC5tw1IusDCEXftIumgGRG38l6Ob4Jy9p4nJzUYTSlmWbFudyefTPwl0f2ATdon+rrJUa1wKfJ0IRXSB1NUMLcjJR0JcS6a8qi/ENGAD40Jb48XW1iXdtZtBDLAFhFFmMhDb0NDut9Z0gkpd3nR3LEt9B2HXRNL8/bluhQkcPO/S3RvGxwLZPEeWu8Xa5r2YbEKku7JSSgkN91ACvpGTZyNjzHiQrSKlmvgqn7SM3t7P28KFTRYaYxHn6EpIC9oG8cOr+NycQaPtwYX/HEIOk4vU2oimfFK4Dnn+8IEbGPq3DlPTnWAFCQroCr90x7LlN4tPUJnJIeDjCiQ4iIz1UTgcvt3hG/PVLIZy0UVZ5uXp7sQidF502UXuT0YQtIp5GG6IvLYfz5PuJUqPER5hZRLs3LLXwEsT5mAZqzQet6veXeqEN25ek02XmIgDDo0UZXUcqCAdYjH1+Wpaq0e2Me8VrPSWW6SvQdbBJ3RKMGrBBc9sEFbcFu7Amu5qgHOGqku4UckWLNT7i3hQOo96umWR6+rs5Zq8lKBbqsTKhwWLh/tqIA+aTiXXJw0gYTr/vqZVnzTBqUgjSLOjfjAI49LSLPrejVcHIMo54z7upKus1OLR8z8icXoy76EQVdkVotGZZiSPlTUObb7QNDeMbz93P3GJTuOLmUv5+f5j5DKjnU/dzskfJQ0Lg3xpVEeMZShGeBKC2NDcTdTTpOz/JuSe0+B+hP8VRKRqtUquwmel4KyylskbBP8PDR4xzR67FecW+QzL/WTAz/ILlVdqOu945a+VEfzzcIYF2dYvbyfZ88zxc7PRiDB386opfgs1eEueEBMmc+FtEcfkoTw7yCpXVi5E9kBw8DHnPoRWhCGKb9/+uT/ztiGUAcmEtkCXd7hpJ+VmAktqZ4COepvlNvW+WJSyyy2Ni1K+3xRW9+lMIlSO+c9J36wvxvUF/I5iyhWe8PvSWGI80IGENgXlLZcwTpS8mczn+9EpFbTjpocoSEltJK7mA48+Ln/nHx+9OA9JFEHK0MT6VNIRbMRohpM6sp4gQL9xzxrrCP2NRa2VS3o6bSXMQkRu0OnzJvyJphaNeWsM3S5IwiSsRI3KPRdGp/WipTzIBJptwi+mkUKYpHGxb0jM0iSP1sxw1wmTrIOKST15hucSZq8Z7OqXkhgl12BnuNjomUmmzvCWCeYrSZsJWOaq0waxOPtxK0AjMl0vk9p6RePnd5/zviUI8HD7sBeDp5oNrK4xEIclLAOxjnhEIi75qp8FAJvt+EnNOgivrRp/qpC0NYNwzCZklJ6mqsEY5pVRcLU6bggqiUy7A1CalAag/jlbRKT544XsW+xaUwLKdhQB4aM6kJDddN83tXa0DNOuAIz276rpUOh2b6xB20TaoouwkKX+7FxJJZb9K5oAJmYi/Ek6JX70fT18cJNiO4VnSCj4NSFPRqBOjDKRQ2gNZ4EW2X7PTfDs50vCyHs6O8AgSU9ry79ggWRJy6mJ0my3Fl44DmlDudoT6HK56+4t2qy2HorZ+QDwCoT6uhB1cSI3lqedDafP9w/2x1M33Qz4bYPYXU/cWRQ4Bky9L0okYvUJ9LfbixpQwEvR9fofVs4hfKjlrdtyRooQP79mYtDQjvn1tArZahpWrqYWDiLFUZjFwYb0dWBT5x/ZuKdHYNc19RpftShdBba5HW2XCS4ZRHKaZgUHE/jMHNy3n/rW6gBWMNL0LYNP6XO7WYPtdJTy6EbvOgfmYYlGMxKDnQWUPzP7RMcSWvY/mZfNHJ78srqKzvzVRc7H1MIjGcXVfE/h9RYO/uZaVUY10EezgOIfB1BomXCRuVfSBcQN1+ZGKIp0k0eDQ54krOPVfvrvD7oZOmiIYEH7k0PGbfot5XX/qt4HWTLSbmXvZzDxviFvmNzAhFzlAdP7Yap+67aqY4cZhXVafk5tAzbNLDb/5QkUnhc4NpTvTsfb7Q6/jL8JuWA4Gf/N2fSAlNyYprUx+BrwgPPJpedbH1ZZMBaUBx2YsbA1bpVj4AFJQyXL9pDBRQj5k6wBbw3qpQItS1WHCxqFHbkcrRWlq8xvr79mYtDQjvn1sI5P7+OnPZ7GjJLRfU+BuYb0dWBT5x/bsGcstFnWpPns+yitfaSnkaO+uUmlO3r6KN6uQ4pSKBTfuoc+SYUctUyKexCQduTYfXNhxLxMkVaUtz1IbV+Dp1s+hPH4JYSjXOZ5BCtQiCsVKj3S4EYZpX7PTfDs50vCQEwRNh7SJFM8M9andSD30oIV0VaHCizmIRBPetu7UgyqPxzjJdIMis+kRV+d/HvkwYuUyCjRbySzs5R6PL3X1WjtacSt0lYDwX/aKz5WgnVMkgPOirJEaDEXXVjuGzN9lsJwl4xzdXGYQZb9EdRxj7fyaMMqtlZxzsN5qo/ANJnOw3mqj8A0mc7DeaqPwDSaa5LkE/l4zrTr1sRdoR7OX7L0PowT3Vp5YJM4Lm4p+gUKqxIjSZgLK5rirA3rYqgC/QM7TWkz5MIt8i+g5P54ft5sn9pu1YvkCjVoECm2E1OWqBPcfJmwmTyjPNRCvH+hNchCK6mYpv1YeG1Op0QF5thd/U9LmDnG01SWP7NxDCffahnGHoO6BXTLdjQkrM1ZGgTGzBhxBU7B55CrCwtykcldBV7ylObW2Cs0w49CEaDTpOz/JuSe0JGmlW3w4uxeyqie0IokZ3hEvgMU4rhNJPGmCRptnH5ga6iYpT4jcn7ZN6xUCDF6pRQaM0DB/64sVjsSMWiBRSRgvrwz001Dxr1AIyqutUCCzbkPWCKblk/bjl4+hRgCbgtKNTIur9fe89l2XWvW4sZZnET9tXB96euuPHuJhk2OeL9+xJsl2mAiDtrJMzD1UySBDJWiZdw5mbIg6BRBOl4h3lHT7hpbkrSL5pwHkqQspiNc3RbwMQvViOO+S3kiJr+Mvwm5YDgYTMnyuKtEBwAf/FT9sN7B187whAOnzIRgjSsQpnnqpeb3ZdoWDrOTl5rqxMFgYU6llHQufUGiawMPQfX1pR5UkoQ3bl6TTZeZlQXeyhs4YjxjbaztGjGY+cO2xj+xnblFlt8CMuXS5+6QFDh4yVo+N2BhSgGyegNe6B18PZHNuuZf2kAvQGeSenKbQWzINN3ycLi52EhNwy1pKu4So8TkS9URMjyKHwOJ4/P5IsZtaem1H4a8ojAc8oRSYgbMtQ4vdYjPwqnQI8WpCM0LRnr2t8IcL3uZNfKuyIZqbysU8UkBOr5vwqmAHGc3G+G2pn7mBH1GYD6dj5IaFNYy2X3ckszTOd0f4GMq+FJlvVRiKoZQn1rHgI0GVif5BGxjhuHJVNBblLeHKoiohIPwgeZDWOdYkmJ/f9gT9z+FVJb6u6G5l6Fl+Tk8eAROCmvqkQfhprtkKkZaXlACUy6yzDLvJw0tPZYWBiOos0u+btjhgj8xX0yCUwNJoYJk45YYgEa4QBhljPQ/4qUZ7drpjuW4BbVL4KPIZRiX8MhhrD8HxmCElCxh5qJu+VGumYkG503BCDKLJgk0LGxdnuBuORKYrywoGox8LGAvP5jDNtwLazpYtx8DwfvjwLa3/xNU4oJMK3WIWYK1iyesprvN7M21lLwtHHISnnawIg7ayTMw9VOc5VXwW3pcotBVy82bGZrPxHeKmEBUdjagVJfB412yI7XTB7202cE+LL8axRx+k85ZX3lA/OkhsT94LvCsuV1k2conbJd3xR2X1Ug4xCvOgvcKLEzf5++hBwfTrYgWyTmQKhntES3HB+cpnc6NSyF82EnFuQfMTD2TCPgM3dKCqkjCBdfKGmGDB81O44MHLVv+pPoISA+HsYiveOZ/TFlR2oqCNOoUdHMrZfpQRaUR+1cF2xqmDP7sP6YVIWUaQ8raENkhdz6hbV9dTv0ABmDFCBYpUoW2Pt5tPUiQy5EoB2BQNqbPGMQbhduUmlv26BOYCdaCoChHelGkIfqMQZwcSBIz5IMlj2dy/ngpl2P9fr3Hs4WkJZa91k5Hfi9Pq/Ueq9sFogFZkkUfeMLKH8iARRKvAyaD++t8TSzc/v74a6rK3tq202+1NyqKtdvuOWnPASnP31fGpVDFDiCyfi0aiK4LG6tE61wqSoHh83Cst24vvr1B4vc9XGzCUydlzDXC1ffOPJ3KlMFpjFvVXdiNO0TaRcNfkTt/GQQpu8T/t1muK2dCCbwMInRedNlF7k6tDIj35n5xYg6Ih8Vc0jYPnrF7EU9P7syovW2e0/ujIDbpLqYTKcrIRfBNQ+ue1uvf92mVYtdKKXll9Kq5LyysgezCUggCNM+4zgJQTgaStn/nHx+9OA9J9PLR+uy7uBeBer/EcsvkCvl74ypA6SMuEWzEaIaTOrD4fHq3x3kWVc7DeaqPwDSZzsN5qo/ANJr0KLSx8cJ47n8tq2u8spWF+XZVrtdMoZ7RlyUiLPL8efhzS7EXQgzpNfJnyTQm65EjH/G5mlfYRcLCH34zsNcR5MMrJEmHbIIcgGuX/h1nefsXfqMTHJthLICRoo5NeGdXttX8nN2xfFP+TdNfeD1OKQbJUfMDDCIxhuUdW12C4gaeUFSuBA3C7U0Y5FhX+7UehhVHwWcwYdGBi0ngDY3uJvUKxr5x9Z/cCWOa+9iUZY18cM1gL1lTwX/aKz5WgnR3Y1pxdOfzx2FyPLNcqC5tw1IusDCEXftIumgGRG38lzRktAmkSr/a+BuSExJ28IAHp3KKs9SbfDGQcf/IOAkoa1wKfJ0IRXSB1NUMLcjJR0JcS6a8qi/ENGAD40Jb48XW1iXdtZtBDLAFhFFmMhDb0NDut9Z0gkpd3nR3LEt9BDuWzMlQxg02y6jbFnzsCSk+lEipLDnL2DVrKRDaJf4TPwdYk73w2ufniFep9x+imZuniac+l3lDmjDuPwgWP2soVEAuV9fYlRytFaWrzG+vHvzuW327ex5LRzxY2uTwtQNZz2OpjH0YW3h1kJ6W8P1vwswgDKVwknEAHWSid0E1UMkyqKIMARfQiX//sLiFdRLUOMfUQLrLoHdIN19Hbs5ghavAspZrvLB/6xEV0LA/LzV19t+TSk6zH9d+V8TVs3NT4elZgsACOzl0vFu9BWf30xeF6gniBaqJMYRNmWRfQpZkFPpXKpeUbS/98YH3bZjA6bshdJcw8W4psafrzwUYyyOVMLEGOfqEsHY4Uar2A2D6ktNx8YXX3DWM//YrgqazDIKWFfs1ulgdWLXCVzI+KWtOkU3Cte5ru2K4WhFTi169yzPqOIEG8MVwJaROw/OBh8Xge5uHURW4vQBhV0BHiwVcekfKzmMUcULBsKmNYXFskWWEzt4MEtPQ+E2KN6+hd4CTHEw540j99wsd/FG/aN7j+ypGb4nfwghKSpGyL6A+hyHg44cUJE0NdN9RfqCdedBU5HGaFydBTz+s+XGSZmQ4ab8mQwCGynl89Ymb+NycQaPtwYUIG4wE8n5dDr90x7LlN4tMw7w3MmWf496zH9d+V8TVs6N+MAjj0tIty404ulLSuiZghavAspZrvsKVjDwbcGEgmY44KnJLKjGFsecXu0P17aqJMYRNmWRfTp4+RFqB3XVX7wjG9kKGnD/X8crSs2cOytIzauYtl2Mns87yIV6MEsKVjDwbcGEi9C2sOyFaK+BF/uCYvbCEg6FwcxjTb/OUgmYMNFSCnsXJ+qHVYvL7wLB/6xEV0LA+5btLswfC87466qQYVZX7oqCdedBU5HGa75bpiAcIhxZwB+xuk7Nd0SRKIFQEkqU/LwB46V/kSufnN0YxyTv2elz31q8kUV08LEx2yzIqONbWj4XxzWyOdfpEy/lIECei6SfFq4UxJ3pP1PPG46v2NGQdht3w2HrjgoXWUvulBNs2OvMGNpgBXpzK8/M/ESAGWYkUhHT22m05cVhxMXHuR/zdw/JUMfIDzDrHemk9eh3xP9vvuW3kXCJ0XnTZRe5N4eiuIc7ODmBUcgCeHY2dSycFtAAXQyrKUrNmyt239gNWeORr37CixZIxfRQJ2dbJDo7hVxLWYQaZwbcPklUTuVxswlMnZcw0WDFurWlTMxnDSPDLN4HmrXpwVdq04RS73wo6Hkw0XRXJp4cvsWhtnqw/lI9QOejwRoei9ABiQgrHnNrssBaHMPw5NgqKdQsFLyw5Ee8qrTRzJoMZ3FCpJ7QKyhgLwzQGBcQlD2y9kh4eD+zbgApTvc7DeaqPwDSZzsN5qo/ANJnOw3mqj8A0mBTOqLI/e+r0NtcQWekaKJvSziWrtnDXTrTkXAA7clOeaqqSOuDgcokPE+JXukziZNGzmSb82EZN8NeQkUVNyfHbs9OIlnSOb5DaSFIG3ubipuBQHSPMKNnbv8r9MBDphaNBpIAmQ4mrWFTJXmaiIwt3+v1djeKiX/0pxKrD9wj2iU+GaCGaILKVoS7l3zIIzaDoYR0m3l5doAcSuI1tqHFeTbEjmOsdtJvnwBjN22C2un408wXHFmMUIj0kBvCtWCmOSpIEWMofoFW0U5vKmIM6++/ofW1U6d58i1QBBbvghvMCAZOfn30EyvpXsqJVyvRiqcWWBShI2OqsevpY6kJpMBjvhhLUODhA/HfEuTEoi/AtPyNTI1EPy3OFM0Qdizqjp/wRJ/byaJsqZAVbUNDJSZGb2hyiVwnHfcTZBg2QjVYijddjCLTAba+loNpPLxc84MOprPThzHQI2oicZ3PpyOuayBpv/ldp7jiYnuRJOKi5zt04+UP8VFKcM5wl5DSEIXfIfyoXDcLycA4oSv4IGw/vSwiLwJjFdBkoEATAH/xU/bDewdfO8IQDp8yEYCPZgff2XQJ7oMmpIdXWqmXNBTcUaOnSv/jcnEGj7cGGmEfXWGgmz8VzT2VcD54+q3NT4elZgsACOzl0vFu9BWQLcOixDL0K2ez2r0la6pZOvCQn78vQaY1jPUa03SUocwlY5qrTBrE66QrZwVxMtvYEhVTuU0ykEfqEsHY4Uar1KNngr2FH+khtWx1hvZc3k5q0SXC96zq8rRZSXfc9JEZyc/Tj4CY0KCJ0XnTZRe5OllygR+y/I7aIG+gbn1+PE3FP48xphtaxaVa66t5zBSkJvIFMDzTaDUlNKz/2CefdLItLL+XFgStNk/ZrD2nU+MBtr6Wg2k8vFzzgw6ms9OHMdAjaiJxncULA/kuwzQ5MOKKPiJT6jqUiQw/koO2d2FrHq6GzRflHd/r9XY3iol2TldLn4/ZWX2s3smNeneUexSiep0OI/t314Wqc9bCb3JK+j2BBB1VYwByPgskR5tsGRiviVVjNrAmNM9tpjKUjIrcrYTnqthVJTSs/9gnn3gHZ5UAIGTUARf7gmL2whIC1S6IDspRwQkoNcndN1v119SSNYjK24Tmt3YI/x+n/HcrjF+6VAtU35dwQJOR6A7Rb7PvN98Wz9KnwVCOorFn9GKRU57lzg5/5i6XQu2fn3RLUOMfUQLrKriPPFmISo07uYYOBYKg4EcS1LEiUU2RwfH0z9pMk5adp+QMrH8PJ0GbubYb+1b+Qe25QJIkIKVHyecAzyDP3hjDt+pA5SnYNeDimP8e0SxZHMeK7TZIou9r5d0HSO5UNU5KHOk6JDQ7a5E7BA335ca3dgj/H6f8c9h6Kk4qJotDdFhhQtq1czttOdUHLpei8QK9KGTIyYYdndrHu2s3Gp1CYkxA26Kw1VnHDGhZs/Kf9XtFjy1SguXNCdJNmTchPCVjmqtMGsTi6hRBv+eCRiOzwOtt+QjCn29DB+3iArmzal8gCdjTfc1CZt+TO6VCXQbpW9DfgkBqmswyClhX7NI9F+sVf6+tUNJ46BHGnT91lSgFrw0UHZtaLNvuph/5OC3+YMRe0ZjDal8gCdjTfchSwjMKm3Zn2kZftMM1CiHN7ysMPfPDjQwcQ6yBdxtF6BIVU7lNMpBC1C0cdSgzJsXZ21hilUNq+pWo8cGcFyV41p/kLS6aR22FePilhOO6NIGvis2tP0hQe1L023r0ZLCpKgeHzcKy3bi++vUHi9z2KEdf7+qxx1DyZd+zE9I1fx9ishAkQrK97ysMPfPDjQVhaFzrKIrVgl/3ryFl3UlacyvPzPxEgBWwYAr8F8nPpfRZkbC5jeW/0Hjny5uOtYeeQCIxCSFeDS56ZUjmh9hvVNRuL5Dd4EBKvLVtU84d6rGyLds0l23foTbbmg97EZPnVajlrynLeMAGeU2KiL9n6RMv5SBAnoBEQvbw3eMlQnNM9+nQjIgg9t8PmP2WD81CZySHg4wokQLqYrZHp0pG0taPySC5XVryGU+eH49fV1bfznl/IzaCXSAKT5HmaPbzDBJhugKFfGO2xT9Gr13iLLfxP1vnX6jx1uB6VpVCetz78wEmy1y4EhVTuU0ykE+O1h4kDa+KQNeSempmoIW/qPAeaLSB8fCJ0XnTZRe5NwGKbyZvxosxBpXVNv2UQeG8eeNVCTKlQOPS/8vQ+CEyREDfsQX2zNqCdedBU5HGYu2B/JEek8n0uDQjUFZxnn/O+JQjwcPuzkXLZT8NFhvUga+Kza0/SFCJ0XnTZRe5NpMd6D7HYDWPk57QCdcwpvBQ+VINtMilXGO2xT9Gr13sxTIFY3buzxRLUOMfUQLrLX6uUNNC9yXRtdxpzgzOdt9r5d0HSO5UNU5KHOk6JDQ7a5E7BA335coi1ikX7N+d3WGJbEWiyeUSkBXS1wRrvtCJ0XnTZRe5PPVsIrP961DELYJDc0zGbGrjsU9Blc3x9a7rWetbkNLJxdgVSWyl17/O+JQjwcPuwzrT1zUffN2vH2KyECRCsrTAXvhjl4G8VuIdsORSfH6zKQP8gBtZz1h8BnR7Cu34H6ebmI4qZ/MnJp4cvsWhtn+Cxhd05ui0FR9eSciV750bHnNrssBaHMPw5NgqKdQsFLyw5Ee8qrTRzJoMZ3FCpJ7QKyhgLwzQEqf0AiR4yZfsjAZhbzE1e9DbXEFnpGiib0s4lq7Zw10605FwAO3JTnbZiRWC+gT/BHtWdfdkKgTwp6xGS55YblfDXkJFFTcnx27PTiJZ0jm+Q2khSBt7m4qbgUB0jzCjZ27/K/TAQ6Yauwrq45jEf4danVs4Z+WHgECb5PNMl0m9qFIQZhwQvck12MZWX8SHGNONqgfz075rszwSWE9mHABxqDc1koM+sOBrYZEBZLRis/QDkt9LjjvfpkawUOoXTNBv5s9XuQQRXyOH0kco3PvBdDHoCer2Lcsz1L2+VDJgkP11AZpArhsaReTNHB3oRN8Btg6AqOS7UG3S5B4lKKwTQxy3xz8TdKr+A9OdbTZcY4EY3LbCMc6799+e0OulTNljoV9Yqj/klbGvk2hYwTR8SXA6peFzFEYUOhcUF0PCstL2KLBpZwMcNcfHxdxMoR6Y7t4gk3Q88uTA+yQLUnKZB+yY73m4IA03akPQdkdFP6fSgyh8uk4nfwghKSpGyAZC5RxJFxd/qPAeaLSB8f4/tW0Z23GiU2jZy4s325rCkBXS1wRrvtgVjOzaN/5RM6c3sTtP8APisX16LvVZ7RZTp27JUwxvAAMnnJZoIo+pCh3SgwVj44Jq+6BuMI/ePNONZDg+EpFo/CrkAFMIJowZR1q3iG1ewCgaOQfQqxGeJKAEehQE3HYMwYnPQWpoNmbIg6BRBOlzihK28OfKqERQ9+rrNYvxRb5yzdZrIoJREGk9zLwOaupfZ3reWiEDtgoJ85uD4RxDAAU4AGdc6SZZcnCRjb8O0C+c8Ul12yYdYQCuKuly8TZdN0lo3FiZ7KwV03A2zCn6QicVd2RGyzDSma+IM/j+ZpO/dLXyTdc95ycEaokcvsN1YDDHtNGURS3wUkiwzTx2wJg852CkPTR9aFnc7L5fYcMV1crwp2/K7pmxmGpnsHFGYAyinSTkd/UD/oQqGLKij0Fr1n37in4K8z47InD02Au81TF6a6+6QicVd2RGyzDSma+IM/j+ZpO/dLXyTdc95ycEaokcvsrvL/ExUOVyGiep2mlygnlkJny/jdhSYV9H81fOFL1zocMV1crwp2/K7pmxmGpnsHFGYAyinSTkd/UD/oQqGLKlRtHb+1L+kzqL+q1qPElxiAu81TF6a6+zwEpnLJ67IHBYf+ZahZEMdyRNAWKWv94qiu0aWeI8eQVHA35kJEF0nhD/61deH7gq7pmxmGpnsHFGYAyinSTkd/UD/oQqGLKnnnjo1RaDmimVy9IHMCtGTnz5cMUkPCqOA2TQ26F9jcU+XQSLaPohSgzYd3QRBz7H6WXx6a56EZRUFMebV19H/KwV03A2zCnykTwv+OJa0pOpRfsKGBccXm3/zzUWVOKNc5nkEK1CIKcZwB7HwERlMP6YVIWUaQ8jXzW2OwiNWqDSma+IM/j+aLqp7+3y/bKQcaTI6EF97q/lVMc9dbKOfcYlO44uZS/n5/mPkMqOdTGRvd8Bwlqrr/ca9VMMvQrZ4EoLY0NxN1NOk7P8m5J7T4H6E/xVEpGq1Sq7CZ6XgrLKWyRsE/w8Oyqie0IokZ3n+uUSdrE6IQc7DeaqPwDSZzsN5qo/ANJgxrGnlAWZ2wL1iTa0xZP53wbPO0Gzl+MZ3KHbraYqKf/7UUM0kEMoSh7cbEKm/ZYHZ1i9vJ9nzzLnVJhGwN/mm54JFZIjnaZyChPoPzkVlmHmlGMDLFVfAl3yaThYsCbXAj1yDPWRVCgOGU2jux48mH0hP4R3+So3bv8r9MBDpha/TUBbXBAMeYswkhyZ/wlpJbqXCTiHjm2oUhBmHBC9yTXYxlZfxIcXkX/yxVhGVa8LzhiDKhb7rUylLOY2/R0vE4cC5VlQFdmQtFXJ27M0e9+mRrBQ6hdM0G/mz1e5BBFfI4fSRyjc+8F0MegJ6vYtyzPUvb5UMmb/7j1KxWm4hlCZZY+6wCzGzrUeqgw9ICfWyK4rECNqLGOBGNy2wjHE5Tamt8mRCaahOFfsqd4b1JWxr5NoWME0fElwOqXhcx9dYQkUzOiDPWCD7WBBMTTTHDXHx8XcTKAdzA8ouBb67IuTNa/VwiCCRLXJh/4DLWaju2XW4K+UwNQ89WM+ohwLTgua//NPqGZ3DLjazqqVCVirl7+9lYkS51SYRsDf5pfxETadR2n3S1o+F8c1sjnX6RMv5SBAnoLNmvrPfJ19Fyfqh1WLy+8NXv/XbfhIiuw6ma24D4/r1ieU4shogYkc6eMuo8+CXhtTYKd/1c9+emJY5/fUdz4bhstvQEdiVH0RyU2xMLf+Lj+Y13y2SWlCTB6xSgcWePkGafvOvg/G0K3WIWYK1iycenkhbx8TwSJJj9w5sIcKpBWtpu9W06FGS6JnJerm5gA+Pfsma4NFbb0JSYUtoAbRyZPWlAp55pEMCa7lkLcBLE9+oialC5sPcJAKUm7hyxoWqnO6JHQh70UFHdZaWPRgcM2x9dc3w8leUQU6j8vX7zwyKf7/9rYiPwUDsVvW6VqhCPYgvPTvgS7ViFxPg1zV0+75uo7hwNu4loUAPfWRz7sK5ChpdQ6xZxogYu/7HsJ5vCB3v3r/jHqHWE5JnzU0YWjUcACaoDH/ugM3xR2sS0vSpw67OpB8G2Yjng+MvBrumbGYameweoKPB8ZfvHjDtQGFPcvTaz3nJwRqiRy+xRle9+W5IDtlaRGmrYuShwn1w21fHwPkQYZmFqD4DFSlLfBSSLDNPHgU9lf6IgVm+JanHIEuSvEafUcrfkQC7c2CXngmOmVBkwEwo1Q8kdTgKO02JPeIj6TcXV+qIYMFrOCYEKGM1fOItjsrrR5QTyapNMI2cBkJeFpSGGQON83SDRyF4ytwRG9haLJjPVglrQa1W4IQFQYD1HG1R4opYe6xM+SbUX0aDFRQHBq/dTBukfEV74rcwy4KAM9EC1zT4pTrskIkvh957ZYf3OWnAAd0kWbQkVkddBuv+qAHYqIgchLc9f0zUMMABTgAZ1zpI2UjzlWLn4BBIC6ocyUgCvJBCuNffMt4oNpUqau8gAFHGic2y1bs/ZSS4TQ9C5KJJThH/O91jY0CJV7zOBvuJkt9W379xR8RJVS6TXY/oPy8VcIBFQXQd1BzUvGNh1Ns1t7xxcKij1+e7bpoXB/X44KyYqASFMw5HGVFyUfRC+ojCuhszK5bXfANihz0GroCqWG9VkolvE4DihK28OfKqEpdXMN09W9EqxRLpVsB62cVDp+UGWitnAEkaiGs8Lsy9NBJ1I9RVARjZ748HO1TukFLqtp0njzC8vjdq2+IkCPQie2P/wrZyW+7CuQoaXUOsnl1STdQxySxqQhWeLyEX+I9IjyubI+34vcNAI0qM2PfUNfrBgAO69L5IHd2cQCO9HcqYEl2fATqpw4jqqp5daL151PwJ0MtHMx3Ax60tLrq/paeAIZaEAvjdilpzyjrgA/S8qTlaUrSQQrjX3zLeKQ06Qa2ND/rYgRx6cjN/KC1SRtAqxrqbG9Nj/7sgUcLoGQgAFwpLaiz7b5ykKQ4PSWNx1+OinPejGb9N1SoucUNMkV8zJTPRofgD/ODTO+xB5FUolzuXTw8OwbHE8LiIo59DVJsuY1X/o5HO32C65YkWD6SOiMvhhU54klvpa8jR6UMKO2CROI8OgVpl0jLi7Au6YQid+i4tubwCTH57gfuxsw2zPJfrrP+XHCyEo/E1Esk2SjxHZg8B+FnQLlpDvoRdfql8C70wP3dCfEUqJl3Z1i9vJ9nzzPFzs9GIMHfzqil+CzV4S54QEyZz4W0Rx+ShPDvIKldWLkT2QHDwMec+hFaEIYpv3/65P/O2IZQC73IJ6pxxbIc8si3rs28KGcI64BzHz86tJ+VmAktqZ4GkZwVvgrmLqVNJO+okG+N+WHH1otdoJ9iO+c9J36wvxnuNEUnQw77mZZ+N9xZN3qmSlyhZHghskSKDGm31LuNDMlVmpRff6HVtJK7mA48+Ln/nHx+9OA9JFEHK0MT6VNIRbMRohpM6sp4gQL9xzxrrCP2NRa2VS3j7LlOcdPwSgooCZs6yOWVaVtcouIt98PisRI3KPRdGp/WipTzIBJpucQAdZKJ3QTbYopDatAxAnm7cQwYubKMSzy1CtnDatqaFTRYaYxHn62BnuNjomUmmzvCWCeYrSZmqiTGETZlkX90mKXZKDc1mYOcClJdgDei51SYRsDf5pWR30fvm2LqoKxGX8pG1QHGrkETziC6UtsKVjDwbcGEjEEOB/qkU+koQEyZz4W0Rx1e/9dt+EiK7DqZrbgPj+vWJ5TiyGiBiRzp4y6jz4JeHBLYRXyoTsgSR10JfZpTZe1HloD3b49ZLnLtvgUvIqYuP5jXfLZJaUR5dAJ70IC8T+45URgOdu7T1umW8hhq3XYQKevnHSkw/0B+p3wAKc0UUAodn0tqTvytl+lBFpRH7UntUyCt5h/KfUcrfkQC7cqhCPYgvPTvhacGqEKeM5pfI5as+0IQlDW8Wp5+84pQjE9+oialC5sBjzplIZIKg71P1cz2GcKBdC+iWUiNGC8Cl0S8hdG//RSuaACZmIvxJieMROtt5LvIox0pglS9SSzHzm1n5IQKcNlwivo0o5Q1O+GgAA7WCrx0qZPnWcBS2BAh9RHhjxSOkfEV74rcwyAzILY8YxPlcvcp1ZF7SDh5LO96hgmZXkuu2qmOHGYV371SPc7+efO2ePgK3DXmbVg/TBDD+2FPJUSvVv1yB5zXg1V2zIc/jWyo4iQpq/X21jm9pufjxdG/iYJ1A8KbSVTdA9KI+VUAEUuzEIN0ELvMyQmyBK8fwUonBxBZepY85ZMPtstBg/g1t2vjHtl9ke5mHhCkAACZe2FoEjqr9SEKgo8Hxl+8eMLhQhYqy+DCWHCNgwgnRX6Aau5COQrAlfxPfqImpQubDr7jYBblG5gsxPri/IrDIcA11x+KfLGhRgoJ85uD4RxJuOGxBJIgIinhe+FSVxwG1hAvTZlMjFySWcQ1/wD0poRf7ObC9/nPsvcNAI0qM2PabIPHCwcZg601Ik0+MTK5Mi9S5kABnnBdfVnBDMalzh+XYlN5t7rdLo7IzBrarwZV5k8vwlVOXExLp9CSOlVSRnsAL6l7ZSv24Pm6waSlRIqCjwfGX7x4xqESar+BDbfwWwy3lt0wVpWEhAQC45RWa3DoHfXHAYg0GbRwfhc93BUsxc5yHWMc4nkcIZtq98OZGJoioY+zZIiRK27F/R+A1inRl2MmeRTb9iauft7ukwZZ+VcQSBMyfwTIrY4xLLCmH2xmRnUDNDAcIXLCommVdacGqEKeM5pXofoY1Mz7ZVXzC3XFzXdbwbrrWcMB6puTPxCpJ1eSqqtL9KtjU4O3aigSmJg95mZd/jm5s1FcaiZUK3Bx0GUEVhNeIJznkcQiYZIBaYiKS5yh93NkpUlC4wBUigPgqYUxL1jK3yPS3ks/bjo98rjNTzQx75hyEPrWDF2n0vP1VmdV+ea8wrGMRCPQC9j0WUJIhqHlXnB+H6jFC6Wk063vR1j8AroiHDS6cN+8I99M88psg8cLBxmDoyiXWZ4NWm3u5T9ZXhXR1ATVQiXvwlKVtFmiACRPQXwtCXEumvKovxH1zYcS8TJFUztOAzmtf6CuOvYgCyt95exX9xX8/GOiKahMpMrPomStYtfiI5vPA0UkcGl5MT8VuO6S8+75hSPlpkgHhFPQ2knExkPidt33sbJdYupexjARy28kFYTtLoPhJu4GYnwLb2J+2cIgK5vqLfT8MAevxFjZVGY851fK2V1YAEZtOVO2MdoivDpPZYFLEQWuXrk4NeJPVWFihNdpns9zANitKHxX9xX8/GOiJNj2OUhpOrDGvEvi+1M0lq3UXuQ+o+QOvPWgngoowu/6cN+8I99M88p5YjVXoVZAZ7aOmnJN2K8SkIubd36/7UdHl4PvMXDlacHRWYW9DJe2bJHM3GGtUZ/aVhMeiAN+ZGtPQDY+P6CvxXWwAyLj9U5dPd0y1gUpUj0TfX3k7t01yaUIser92k4n8mvVoT9X/tsy+niVdEnseF3pcrtHrDmLYi67vbZ9A1SL6BOJ6p/bPpEVfnfx75FBPIowdpugU32WSDzqEtllo7WnErdJWA8F/2is+VoJ1TJIDzoqyRGgxF11Y7hszfZbCcJeMc3VzqM0LtYbfIMi9Yk2tMWT+d8GzztBs5fjGdyh262mKin5l65ZxeGqFe8nioiNf/5pRNnaf5BUCJQQ7h3Cut8PxN8WEmgxSH+2Wfk+8nMTbY4HB7wjzV3Y5nIKE+g/ORWWYeaUYwMsVV8CXfJpOFiwJtCCDK1z92QBEO+e6FT8bNHuAaHC6E4XuTbS+LPAaV7+n/SnEqsP3CPaJT4ZoIZogspWhLuXfMgjPvyOtOq3x3UVUv0/LVLK80IpCQl7eJzv/XzSaczewePMrljgZKgoIUxQiPSQG8K1YKY5KkgRYyh+gVbRTm8qYgzr77+h9bVTp3nyLVAEFu+CG8wIBk5+ffxiug7p/vpeDqt44aALMB/Vzi8fxgT814xjgRjctsIxzgLYsEcbWnN9pW1Sy2jNNsSVsa+TaFjBNHxJcDql4XMcnBbQAF0MqylcrCBVN74E4xw1x8fF3EyuaK7OEZ5+Z91/iZDlSkLFfwkfMks6qCI+YJezglvSbGTv7eWUtPXlnNtALOYbnGiEUd4Vkr8I7UJmYaDeJokp+nT5LnBPpBVxjE7ayMaesOEAzdzKc/RmrgGhwuhOF7k20vizwGle/p/0pxKrD9wj10AVh1VIvGYqtMd2CFg4oGWKgaFchUyLLINNal0R8eUWp4+BEghZQJ0HRMEHDKQsHPBkni0XlZ5iOA7iwZ9AfY1nDzrg9CCCYBXyNy4NRj9966qtyTNIeJvrtPAmWMG/2m9toO0x1KyY1fqIrjzbRe2NMfYYhV+wd6ESNs+N2726axl3Norqog19kOJCywjESoYwYKRgLuzNlR2f3jud3hWv8mn6gKWQU0s7h4s4QAXRn5tKcgMpAeISULGHmom755STYN+JihPiB88OXjFM5NXa5CguWgxCWr+6S3t4ctx7EgmH/3012019kOJCywjESjokQLQlhs8vlk4KD/08eyJEtcmH/gMtYUVuuyqs7bkOOf04nk6Sh/D1GoepQW5zvCcn6Eg9iennn+8nYUhu1lVAyWCEIh/rJuw9CC+d91ZzRwmsGilYZZFA6j3q6ZZHpTghyjxGwKu6q9xL9qeYJ319kOJCywjETNBFf9z8KnzYncV538D4sgfknbzWyRtdNDBwzwe35EGHoKZC1yJ26VYInxzgBT2V/YSFLBzNVY+z8EkHFK6go5sHqBbBykXe2GAAV2zIymjPrCUFOpa03E/XD1FqXjwgcOIiM9VE4HLwidF502UXuTF3GhOz8v9uZxuspwYVTmEA/4UZ1Wm0ZX8cif+IWX0J5GIsywBiN6vXs9q9JWuqWTP1yLA7i/ytDnBi854i3uALsS31sd/R7sjjTsYrU2twxMkTclAe83O9fZDiQssIxEO2db8T06srfFQU44Gp5UdpwTWPq8kogal2tNzkRBLDeNocNWf+aMRGWOGMTFsJxMcTxQ9kJdH5BtLWj8kguV1WD9iiMkIeIr1u270o5LLr/7/iQvsfAuDHafrOzfvCEKYkRgH2EM7Pz2XTRmxGcMP/dJil2Sg3NZGJmkmSIuvhLAIbKeXz1iZv5kKGQEbnSeth0+LrMNAnDpFWnUs6967rGNqgrIU23MIzVxhtVN21QInRedNlF7k/D+i65YHrmIvoBbsUiS+4YeNHzILWG3BGkx3oPsdgNYeN1PEWmN7jboXBzGNNv85aN/H8c0l+gwyptMgyHeZWPkOd8XruCGmEBSZEMeWEAJjaHDVn/mjERljhjExbCcTHE8UPZCXR+QbS1o/JILldWq8+OYAtonofvRU3Ec01/I1BvtcieEhoRJd7UCcyUgKQUH6aAuc7u1fEKzH+JO5Q0lKaTkM7s7SK3xur7WZsB75DnfF67ghphnO4uwtdCobI2hw1Z/5oxElkHMRoqwyXysx/XflfE1bNWXYVMfeWJF9gPzamc3K0Boe0gYQkk5Dhb7PvN98Wz9awlyRjC/wRRSPx4siOI9qPcYBaiss3ssy00G/3KjFExjaXG1B5osvA8I+98m0lr+ul0bR+NVPej8MhhrD8HxmAidF502UXuT92657rop8/M9iddUkHp+fqmswyClhX7NjiCuY1Hf0spf6HhpGoZGq1cbMJTJ2XMNXgM3MkeQuoHkqjytmaJle6nbKYFtrLycmZcdRn+1Mb7hRMKubYzh9ylSZZpHte5qRFrrO7OiPGfaVtUstozTbA4EhwgACmbkssfMElPAzhU+cdDuuBtQOKgnXnQVORxmiTyDAwRisUp6llgPbvxt/m0taPySC5XVU8ECwn933LFuvbvCXSMKr7ossWkwQiBrXq+zLhipizQKfUvIpCY/jKgnXnQVORxmUcvbaZkwz53dHaN1v/FZ81zgehnFx4MHeSb42wG11tfYR3VfQbFEuilSZZpHte5qCCsmDLTd5MDvIwdpIUduPaisvbiT8aIuL8fcVKrsJd0eBsn61jXX8bClYw8G3BhICcWJM5vDbFNb/XL6XVgDU3v8U5dEjJiIYAG33e7vS+eM1RjH4va682WTXfepCxjxUIfXg8T3U+v7yTQSaEh/Jd1eeZ/oK9MhPPN1PRIfQPHX9CFzN9H5KLB6gWwcpF3t+wk+Xti7x44p+rW/EzI1hNx8xhRWtszuh3pT1Nn9W0S64tUbLtivoOmnU1QqKIX+Z7wUf5GVr8ZvTjxrgsvek6ll97D1cowoP2Y8QCAjSK8uEgDiWGXdTjNftsSMYo339bicMrGG1uZGKTPzvGJ65A4lrh9QfaHPKpSTx2q7uZMxgDBQA/71R+VYb2anwb6FPpKhiRWGgklhy2vHV4L0ucMrbjhTuTWgWzmfExsZ3aqQPEqH0s01XvNXSMIYEdRjsSBhvdmQ6c0YJzYwcNKwo1ctYm+HXHkv+U1e74T1ZE60rXw+JUoKPgR13IYQWfEob5ifr2SxytPDNON6qikB9fxcHQ/6Q/sycIvppFCmKRyy2p4QeFN/5pghavAspZrvtNUlj+zcQwmWyQTedd4ZIxtUlTucMj/bYDoUlxbACXuhOW+6TMuxjxCasb3KU3VFtgrNMOPQhGg06Ts/ybkntCRppVt8OLsXsqontCKJGd4RL4DFOK4TSTxpgkabZx+YRbJEpschqMCmUL33zEeI7lPm5je36w7FFY7EjFogUUkYL68M9NNQ8SDJuE/VBIM/PQ1dT7txaiL245ePoUYAmwRqfat1QEMyqNRDdPjLrUFiCNFvAiVghHrrjx7iYZNjrjCV1zBadYMbZmNHXZBr5wf5wzGK99U22/THmpU4cfHNBmrBO76gQxsl1i6l7GMB2VqRbNAZbghgFQHkJU6CWEfJnyRfPEjBEHm3ns6at3icffJQdGk9rInfkK7LmF2GJCqAMQ9I8znuHEmMTsjrLYyI3wVzvFv9uESmKfIRkh2YIWrwLKWa7ywf+sRFdCwPy81dfbfk0pOsx/XflfE1bLHQqyC3FNWWSIqn0PhvBL7IDMNMrGnTiljmurjvzITRyDTWpdEfHlFqePgRIIWUCaFGJNZ2yNfplZ1AljSFJry3DoHfXHAYgwrdYhZgrWLJWgi2p5j1Dpfdp9pJtTz5echhiCYg/b8CuT1Da1blGPfK+NVM6rDYFUrmgAmZiL8SC6DhZsIDhDKi30/DAHr8RXlLftx1/2oxOX/0kekamNgfmWmkFg/dsqOfu9X+hyLpII30bHmqqcl1/uNDyHG04IEUvwJZCMvNLol0wa2IARScr9IU+/lGU8hhiCYg/b8CuT1Da1blGPfK+NVM6rDYFSydVNL3F3JEGKJ5bx0Fr20iULdOCFwLSfx74kwIn1EfqJTlpZBXadCIaaVh9nAtphkLB5/d3maFQjNLPIHvt3DWUkz9ZZ6KTUg+0BrZTSTXhWeh7DaD8oG3DoHfXHAYgwrdYhZgrWLJx6eSFvHxPBIkE85PAW2C9RtmY0ddkGvnB/nDMYr31TauUYdi7gVBK0DlZcMqC0poDfEspk/ikW8vnMubIx0I5wM3mSjMwXhTUgpxG82X3dJwCN2Q9/cSJpQRjC9+HZEH02Lx+yLdbbdV6prmjSU5Q2S6W3xrt2d0u9Ux1otgSQ+D3UH9f+Dq4Ou0h0GXBHgwqJTlpZBXadCIaaVh9nAtpg0lRytcSJp9RHxTxJAcVZo/5No1I7jA60GXNYq5Zfk3H6mxtqHY5DsjqjSnKyAQcDXzW2OwiNWqGyXWLqXsYwE72S18w+iQ5k1UIl78JSlbiWpxyBLkrxGn1HK35EAu3DXzW2OwiNWqRZhkc+M090kKYFWCGPeiCq6EHVxIjeWpjsQsIRnDc+fp9RSrH2Oxexlsawt4Sacp+oIjyOsL++PNONZDg+EpFkKqxIjSZgLKTbumDFoKSkSIah5V5wfh+hy4olNeM5uFGyXWLqXsYwH9HVGAWU6SwMhhiCYg/b8CuT1Da1blGPfK+NVM6rDYFUS7PuG7TQikd8yoUOdj4kIUHpzx7j8HKUS7PuG7TQik+ht+JA7X9cfEW1Z7sBryf7OHBZlPxSq8nDZroB/xTkJGFo1HAAmqA7OHBZlPxSq8nKujXuEB7CTSdP084ZvCHPVvx/QHXv1slaW7x61Qg+OZAcg8tDgjcDls6jGCb7EYbTe53PRKDGSAB0TSMSJY85XLa9Kh6ZgntFP8Mi1XHcNO+t0dHfBRYAOpJIJRgdE6b0/Bwo2tGXdHp2pR16iRU4g8MvgxX3Jwj7GTA3arzDeRSSnJR6ZLdGgMPdJe5i0wBNh6mNBshTHK+NVM6rDYFd5IbHevwm6vNiRYp59RI1puk2kbmgSVbp7Ja6me6/TIB/nDMYr31TY+ALFytH664u6Ryml/ZpkHOgcmeXvyD3Xs10kM3BsVoSzLEtvcTJJn9BhZqnl2hnKIaaVh9nAtppDeAxMWBEzX92BZhJNiX8kcWI/m8exx6ChCWes/3d8h+ht+JA7X9cfjXwXrtOgPMrU877aeKlLB4VJU4UMsRdhqePgRIIWUCeHQSAbEUyUnGYIe5zjIm1gOD1astsHlPrFum081571kqNRDdPjLrUGXbCPkRFe17zJSZGb2hyiVLNyoUQ1jL4pm/qu8Z4CRSRdT9xZFDgGTt6eN4xUu9n7Y7OgkOJIBB4MkMaZq06mdntBa95qrzlfeT6SrPghCMqGjOv7t5Msv/41BdtMmcNIvQDV5VY5wRBtmY0ddkGvnB/nDMYr31TYyxwc1tcsxrwBObrDP/rn+taWVyrCXEF/0wrbDzqxknex/CL7TfAX8HJsxuCVlXWVdb/ZpgB2DvodBas0FZK4Q9UtEXQGMerTmsEDkMlHl1uvc3qALe88kmCH5/NGg5I9whgpZyKxt6/REx4m2u0YOlX/BAsIi0hz7lJIbZTc0uFZjHU3bI3C26xeLjzFAXHvUeP9LNoc/mG5YummuJwsJQstLL9KD+JYfXNhxLxMkVZ9xNIGqXCp0uuLGU45PngkInRedNlF7kwPWh86/oNsh98drs595AEfUWHh1g5oLcRJLMfzjqc8Zzz3aDHziMIncfcSo3Tvz/O+yNFYPWJRCkdzYYz75YP6YujcSkqlg5ZD48am0L1GaNUi+gTieqf2z6RFX538e+a7MCgGUfaPJ3vz9XoZYLodaO1pxK3SVgPBf9orPlaCdUySA86KskRoMRddWO4bM32WwnCXjHN1cZhBlv0R1HGPt/Jowyq2VnHOw3mqj8A0mc7DeaqPwDSa9Ci0sfHCeO5/LatrvLKVhfl2Va7XTKGe0ZclIizy/HhznGvk9DeHyzLXu3Uv40qlYMEtav2W2bsCtt93TXKSmeTDKyRJh2yCHIBrl/4dZ3n7F36jExybYSyAkaKOTXhnV7bV/JzdsXwlE0D3nL2XWNC5uqNvEe7DkQM4vUmYmJE5R22eH0Fg+u1NGORYV/u2zd5WxYz/z8TzKzY6eg+kgJLmGLfVLuZ/j8+R0zQgyAT/b3XXb8iHl8F/2is+VoJ0d2NacXTn88dhcjyzXKgubcNSLrAwhF37SLpoBkRt/JdNH4aDsfjyDR9mUG5psNNlX9RSUW5rWsWk4PeZqlARBGtcCnydCEV0gdTVDC3IyUdCXEumvKovxDRgA+NCW+PF1tYl3bWbQQywBYRRZjIQ29DQ7rfWdIJKXd50dyxLfQRznGvk9DeHy+De2vSGTqKXn/OwaX+C9QuZQ0eZ+/fDFYN5xHKffcJfGtT5axTGEc7yu+2X28hLEoUJHDzv0t0bxscC2TxHlrvF2ua9mGxCpwCOhP+JWzqH4gnMFLWYViaDrC/MKGUNnSJ98G4xo5Cc3Y146ALCX7Q4EhwgACmbkIsQ2nbuVJWImRSntlZ6v3Zc99avJFFdPkECCV9NIatv1hnuHulOV4widF502UXuTpZcoEfsvyO2iBvoG59fjxOgeuuLCCQ3CaRzuMtZGznXJ7PO8iFejBAidF502UXuT+pZskODot8kacsePq67WiK+plStZjltRuo/IXU4u6sKwb2CBN5+45oiHEpQ0bWxcdNjU3ypicFKQab0c2kyEuyVPi/DSfO5/mw4Fcb/dEWOPilrTpFNwrXua7tiuFoRUO2db8T06sreNRsn3OsmH0Hq+mmX0AvjdZXh+NiqDObWCK9cLPEGywizS75u2OGCP4whfM7ocJ/rKvPl8EnHGl03HkUTtSwHzDj0v/L0PghOQCllRwttmDamswyClhX7N4bv04EPz0pGN9kq9ydizWXX6zZMu2Fy8sIc8jYfhbXp9lLtepiRDF0bGn/E22zPew0HDVKNL6Y/M4GQfHbuMSxF8E1D657W69/3aZVi10oqnBqNQuKoFMiB7MJSCAI0z7jOAlBOBpK2f+cfH704D0n08tH67Lu4F4F6v8Ryy+QK+XvjKkDpIy4RbMRohpM6sPh8erfHeRZVzsN5qo/ANJnOw3mqj8A0mmuS5BP5eM6069bEXaEezl+y9D6ME91aeWCTOC5uKfoHZLT/UIoFAAknELfv+YFvDeTDKyRJh2yCHIBrl/4dZ3n7F36jExybYSyAkaKOTXhnV7bV/JzdsX8sBbEiM/MZFaTQlC7no/4qx29nNWykRXjMervInbTTHu1NGORYV/u0uyAYcjedznuy191L3nrBQ1XPjjtIMVfzqMYLvzXcHP6CAYxxzA9BZ8F/2is+VoJ0d2NacXTn88dhcjyzXKgubcNSLrAwhF37SLpoBkRt/Jc0ZLQJpEq/2bLF8V/TD/ma8qZS2YTBwyd45zDYFiSJRGtcCnydCEV0bx6bptJ+d34LPm1h6hH5/bjcfri7Zp3N1tYl3bWbQQy/oVvwbGkm2E5MnWhGAS56Xd50dyxLfQdto3VNgELtq3p35qzdu84wEesCeqfhezdfOctf7iqzmU8tqjClJFZbZLT/UIoFAAuFGGNiJSJOBI6o0pysgEHCUExOJxVlPMUDWc9jqYx9GFt4dZCelvD9b8LMIAylcJJCm1z/rNCSF2g4CXnNAweZwTKlRfTSi+kmQqaeeQwYCWyM2bad82Kf6wlBTqWtNxLF2r+65tD0Aas0Hrer3l3qhDduXpNNl5iIAw6NFGV1H0DVPxg9j192A6IzLaU+QWpZ26vyMboJirrpaTfBP/oJqokxhE2ZZF9ClmQU+lcql+xMr9kNtQqks0u+btjhgj3afrOzfvCEKgE7sVQcc7qvUWHh1g5oLcZbpgnf3GBHtyMRHPU6Hgil+SdvNbJG10xYMW6taVMzGUOo6+cdYC7mprMMgpYV+zTbWSybh3qpJfE/2++5beReTnfMl6eHHFW2YkVgvoE/wlyffpmFr3EgkJHG/hyBQcv34zhICjQqs4PcwMJA8Sq0J4wM1lt+5H1rgM3ZxsXy3ylkX1L52KqXKV7Okz2VN6lBTfjlUrVJ68WfDmTcBcYVtpigMQlukEjM/QPAW1lbCF1P3FkUOAZNeeKH8ISDYQ3gdAvUEJvM46j6XIrBXMUaqS/gDKBfSi57I/UE++dHC099dBkImAEK58S1ATuraD+mmWnO8BEjFR+hjtUBveeJIXJ3UPZOCrFBCUp1Bubh0+PObTC3fXzcwUBSRwtF2UvUPrxtR3zhTb5I/w6VSqTBGTs6q64nV1jxkHi3jQ/T4GyjXG0N/wEO4m/6RU70HUlXS0kgF/8araCc3riMcRYltN7nc9EoMZIAHRNIxIljzVXZi247emdjrS1RgqbmDIWwLvrwg5WNKQgyiyYJNCxsMWPMkKS9GEqf9QnOnX5MdxJ3CNTsMpVlQsD+S7DNDkxxLS3b/d/iQDBzLPZ4lel5bKq6OGGU/DrMUNKzAyPTfSgc5Cb8xqrF/509F7okwIgkOg1NdnM8GCt1iFmCtYslV4u3JS4LxZ9xiU7ji5lL+fn+Y+Qyo51PzEwPwRJdkzmiRBs4S3X4DngSgtjQ3E3U06Ts/ybkntPgfoT/FUSkarVKrsJnpeCsspbJGwT/Dw7KqJ7QiiRnef65RJ2sTohBzsN5qo/ANJnOw3mqj8A0mmuS5BP5eM6069bEXaEezl+y9D6ME91aeWCTOC5uKfoHluPizqU+88/sLZ4M6HW1nvPIKCNOVSFiLfIvoOT+eH7ebJ/abtWL5Ao1aBApthNTlqgT3HyZsJk8ozzUQrx/oTXIQiupmKb9Yj8XG9ZwIvLLIOPGk+pdS/O+JQjwcPuwye6uZBNu5Gn2RtwhehI88CwbEfHwiYcPagkSpMn77RrGPYrIh9gJcB+QP9YCH1iw2uM5NIX+igbVACI3dMv4QEqKLff8Gzy9b8avZKRC8H3qivC/G+R237rQ3ghZTmVLCnoofKf4bCm637NwgNHl+VsIFi+vx2I49xJ3qdoXF2ZpMBjvhhLUOCcX5XwXpp9PP+W2wpxakzXl3CZGuV/Umzqjp/wRJ/bwB+/oFC/cWC0fYWRvCZaPhwnHfcTZBg2TunmHEEFmIX5QJNK+Xim955rBA5DJR5dZO8XvQ0l/OcR3rYBe0aD9ZvcQkwzXuVLLGtT5axTGEc0MsrL+7owsmI6o0pysgEHCUExOJxVlPMUDWc9jqYx9GFt4dZCelvD9b8LMIAylcJHJm0RBsQHVR3DBWp4K7oPuMgSljN7xmeLossWkwQiBrVwQDpwIpjcQzy2w2gwgX6KmswyClhX7NvCBGxj6tw5T051gBQkK6Aq/dMey5TeLTeHoriHOzg5jvBXGNVm7BmKItYpF+zfnd1yflf96NM4D7YahhmvfHqRb7PvN98Wz9yOPgIYHCJPN8T/b77lt5F3uLf5lEgKfgEKQbdQxbyPyeQu3ATXRIGHuLf5lEgKfgN+mg/mTkFvRghgLA6iND4YfAZ0ewrt+BpyUVX3TKPT8xQMWuIfGhg5c99avJFFdPMMUgBeaJZ6m1o+F8c1sjnX6RMv5SBAnopE2gOJ4Vvf3yL6dRmoTB+BQOo96umWR6VwQDpwIpjcQzy2w2gwgX6NjTH2GIVfsHXUMMw2noddTS7M/3QCP07/zviUI8HD7s8tS+qEk1OPJRMEqjooq92aisvbiT8aIut7yUSfyZ0y9yfqh1WLy+8MAhsp5fPWJmohC3btIaUEEPkDFkMZ1fC+qT7vcte2DjMO8NzJln+Pesx/XflfE1bBcveS71IuDMNRZJzmvb28k5ARWifzswPlApVeszZ91s0KWZBT6VyqVnWzLS4t5b4amswyClhX7NbpYHVi1wlcxPnFLdubXyEG8wwSYboChXelK3jF2j0YxPoGoZq3AdYNLLhOti2zdoD6Fuq59YH2009SYDdbRi+8NzWHWBZqgwg4hhB3MrwFFJ5f1Nusno4tZhY6RFS42u9cGkNyKUr1vXpteXn/zIT7ClYw8G3BhIe5LVIHo7U1k8szcGYZM1uC51SYRsDf5pNsZqcyq6g951azWB4SIr0Yv9D+mR10SswnJ+hIPYnp6bVgJ18nhgL4H18sQt53GWKxVSYa67JbDIKGUzXNOgc647FPQZXN8fvu/K99396Hz2906z+kesPKJbnLJClui+wnJ+hIPYnp7XpXLG9+L6InuLf5lEgKfgwH3PrrsDnmjJDj6IHE0q+fzviUI8HD7s1rg4w7XUQHw8NVkz3rDvE6cyvPzPxEgBYjSacx4Kdd1P/+P9lsCM76nbKYFtrLycsPm2K747ytg1EKEIPoi19dqIA+aTiXXJrwkJ+/L0GmPgTUHsg9zitin317M9OOuDwH3PrrsDnmgOXgNG0HfJOwRUytuR3GI4t9mmcsTSI3CSQYXExmoB3tZhY6RFS42uwnJ+hIPYnp7XpXLG9+L6IrClYw8G3BhID71pxnDfT61ZK/G5dv45ntRYeHWDmgtxjZCDDafdSe39J5z7AEPy4QidF502UXuTqHZ2KSCB8+JTJ8wos1pWzocKfqOhRuu5Wgp6m9QR1FD9z+FVJb6u6MJyfoSD2J6em1YCdfJ4YC+2051Qcul6L4ieo05Rq3kX+x3lwQ1kQIi4FuPEUwjhzgS61MART0bD0XiKoR0CbIje8rDD3zw40Mfe2XixJjHaqQcoDFSIIFIRfBNQ+ue1uvf92mVYtdKKcjmh+q3V7cMgezCUggCNM+4zgJQTgaStn/nHx+9OA9J9PLR+uy7uBeBer/EcsvkCvl74ypA6SMuEWzEaIaTOrD4fHq3x3kWVc7DeaqPwDSZzsN5qo/ANJhcK+qVlUasEsH5JAR0212ixIGG92ZDpzRgnNjBw0rCjVy1ib4dceS/5TV7vhPVkTrStfD4lSgo+BHXchhBZ8ShvmJ+vZLHK08M043qqKQH1/FwdD/pD+zJH1yWMmg9EZ4wJuDrY3JXHLBqeXidxPZ3CUT8xBa5q0waMcYiETBCDfZG3CF6Ejzy44kpPIL57JNi8QRUEuDuNHVye/yjnFYZkGG0PL1W95BY+wZWcl5VqtUAIjd0y/hASoot9/wbPL1vxq9kpELwfeqK8L8b5HbfutDeCFlOZUsKeih8p/hsKbrfs3CA0eX7TJ0pb3OSQyptpGBN6wELKmkwGO+GEtQ4JxflfBemn08/5bbCnFqTNeXcJka5X9SbOqOn/BEn9vJVRiCUy6hkhBvhMmddKqcvCcd9xNkGDZOiYb0m3yoc/jHpUXSNsTtaCv+kuaLr03JDeAxMWBEzXGyXWLqXsYwHZWpFs0BluCGAVAeQlToJYR8mfJF88SMEQebeezpq3ePYdz5l3aMnALnVJhGwN/mnUigQMQ9ZLmfmUfzQXlMcOBAt74yckR+tHgjEQz86HOHNNIXdpvSiEg2DqgKQ7dHTO9ruUdIngy5JoHqqfKMQN2ha82Eh8GbmG2ohLEO4FQaAs1AUB1EA82ha82Eh8Gbm+t8lGDew81uLWk/CA0D+NeHNcTR3fvunusFOmi17C+Iq470QvXJWpLzXqcxenASWGRyEzc8vwr+3BF5LXVfnkxE3FgfeziL5E4OTCsqLEqyzQ/cf2E4lFycFtAAXQyrJ78aaI/9GLwJyMsL2yi7AIWVKAWvDRQdk0lJC5zZPgrE5gCebucHwbgUh3DRZgCXHqvcHcSraCoYeDRoldj+t26RVp1LOveu4WXld+ybMnlkRQm5fACDA2LB/6xEV0LA+iCBSqVpE7sQ27fvvnw6f25DnfF67ghphzwEpz99Xxqf1PNUktXhlq19kOJCywjETxh+DOqBHDyvNGiAjOzdBnxE3FgfeziL5E4OTCsqLEqyzQ/cf2E4lFCJ0XnTZRe5Njm81YR7ONFOb14IXPvWmt6RVp1LOveu7ZlW6dUMzVyOe3EricAnNOFejO7sMZwo/5Xh1lxy0zdTYNVVttBNaAmJ2nsCRXvIMQTQ6zkXwc2KNi8vobuVv1hRrw/KUx1pyOvLxvmFgkg4v1Tl2X/4wMttOdUHLpei/ZU/degIUEsVhriANCQ/bpI4n2bpkjNFgzXkaQR3bjhb2ekB9MLpv29xgFqKyzeyzq5+sazfbpGOodUXF3L9nsqCdedBU5HGZkk9m+dIOpeu2yEWy5nMR7pmJQnHjoeQVwVlKi209+9YKcDlfXANXZ5uJW8+swMkf1PAB7Jj8y4+awQOQyUeXWwGPasytAIS+sbrsH5DVnZ99x28lBvkzw99TD5NbHj8pbObc4941FLl+z03w7OdLwU6BnbMmHIAUIGf/JOHiEoaLfT8MAevxF7H8IvtN8BfxSHgHKMopo5HjxQi8P6OjcmeNc386qYyqOE2Y36DRibt9x28lBvkzwFa7a6D7rhxiE2dy58tGpMpEWey+9szrJV5nhk9GSfr+G3v9F/G4tQPSukEeavpeBw7vzy5RL82UiQ70VSGFTXE+AL9naLDmALND9x/YTiUXUWHh1g5oLcYYNuhp1y0n870khgj3mkQCtNKrCgDc+8PX/RoXJv1UwuBe4c9i2BAToPoqzGPvquNHg0OeJKzj14RDsvWa3keRe/vLwmNV8YkIHvj2ZlEdLbmtKSj4L+7SIXqvym5XPu/awmrrq2U0tAd3cc9UYF2SXf+zqI0uXL0WsowRr66ANOv1cRWyxvDUTiAu7gxoojYej4QJbZw2L9gap63XvtaBRR5NLZhXizpBmn7zr4PxtE+whoG+jblkVjvUxtuJGZItw1Gg/60JVMvhxUHnfy0DBLh1kT6UYRe1kXzsErRXKkkidRJ6ZHXyFuj7U708f1SYGxlv/8gCsC9tuIsfkMTQ1SL6BOJ6p/bPpEVfnfx75CZIfsj/iqRLe/P1ehlguh1o7WnErdJWA8F/2is+VoJ1TJIDzoqyRGgxF11Y7hszfZbCcJeMc3VxmEGW/RHUcY+38mjDKrZWcc7DeaqPwDSZzsN5qo/ANJprkuQT+XjOtOvWxF2hHs5fsvQ+jBPdWnlgkzgubin6B2S0/1CKBQAJJxC37/mBbw3kwyskSYdsghyAa5f+HWd5+xd+oxMcm2EsgJGijk14Z1e21fyc3bF9zGLAh6vc04toWvNhIfBm5dg/MxIPhaMxEACLtqJl51rTVJY/s3EMJSpYbS4Bo9Z0AxQog+TkhEkG1AYP7npLLL/CKpyn8gwnnVF9ibW/eSrYKzTDj0IRoNOk7P8m5J7QkaaVbfDi7F7KqJ7QiiRneES+AxTiuE0k8aYJGm2cfmIq1Fugq8eJ2C+CuHxfHXB+XNfC/BI+e4hWOxIxaIFFJGC+vDPTTUPE4IYP/3rnAECHPis8KsN2p9uOXj6FGAJv1g6Nv8W6Z/kath+eQWvAvgy2bifbWHNx6648e4mGTYwOMfFJMFKP+TcXV+qIYMFqlprC8bbkG9aCs6uIi+T+RCzL26dxD1XV3UxwLkApFepzYMiciug9lU92KbU/VtQX39zTWgHDhPsjma9TiiVW/YBUB5CVOglhHyZ8kXzxIwRB5t57Omrd42V3P0qdX3DFi3JoQx6dcKr3gp9rJ3zJBEnIKUPEo2h2MiN8Fc7xb/WPCNP8HWmb9ICGi6jN5TSCweoFsHKRd7aXJ7+FHwzvsDiIjPVROBy+3eEb89UshnPDnYckk1dnRCJ0XnTZRe5NIn3wbjGjkJzdjXjoAsJft/O+JQjwcPuxWjdtNhzPH7j2QyC/W9iWo2ha82Eh8Gblzojs2itu0SYGjBOfMVP4cjIjfBXO8W/0mTeeW9aKevcUJE0NdN9RfFphRzVYut3Mw7w3MmWf496zH9d+V8TVsMQocLKdciGHx1CdD/s6/9Sp3g8XdxRw5oQ3bl6TTZeZBdwALvBXtJcRnlgmr930TmDDIc4pv3Bh2D8zEg+FozEQAIu2omXnWqazDIKWFfs3jXKAUE0414MUJE0NdN9Rf3dJ4X6anKLiAl0V0oSkFDi6KIAIlsmP02ha82Eh8GbmWm59fvztRdID+oxl66ERxn5PvJzE22OBb1zHivW3tlXKqp5aMZNc5Njaj3bpBrajDRWwHazbiDSaoSIhkNBV6n5PvJzE22OBwfe5VbnKqYP0nnPsAQ/Lh3dJ4X6anKLh2D8zEg+FozEQAIu2omXnWqazDIKWFfs3/s8N/1s+9HVkd+D1AkzA++O1h4kDa+KRjxmHr+/TM0kcGtlbo5vSll+t5wFs3H3CqWF3du3W/W+BNQeyD3OK29xgFqKyzeyzq3vcYGwpNPOnpajQQ4N/NqdspgW2svJzERidOGa2ZE+1tst1X2NA23dJ4X6anKLg7Z1vxPTqytywVokGTfTkjwlQTkDv4sRLAmLbP5Mx8pbKbztWT21vTEXwTUPrntbr3/dplWLXSivDnYckk1dnRIHswlIIAjTPuM4CUE4GkrZ/5x8fvTgPSfTy0frsu7gXgXq/xHLL5Ar5e+MqQOkjLhFsxGiGkzqw+Hx6t8d5FlXOw3mqj8A0mvQotLHxwnjufy2ra7yylYX5dlWu10yhntGXJSIs8vx4iTO0ofqpr25L9WcJfUOqobQK2WoaVq6nXwFwHf3FUa3kwyskSYdsghyAa5f+HWd5+xd+oxMcm2EsgJGijk14Z1e21fyc3bF9hAMOEIsSB0FRhFBO0d6HRVXK3Cf4FZEbIn2lJMHKN0btTRjkWFf7t9PWAHd07i+AOf6Jwp6AbJShfmMxDyCog7vaIsoxf0sVS9hUJ+jnX4/Bf9orPlaCdHdjWnF05/PHYXI8s1yoLm3DUi6wMIRd+0i6aAZEbfyXNGS0CaRKv9mXPUhEJEmggNCFaGIn//5sHeUHa4oKIPxrXAp8nQhFdIHU1QwtyMlHQlxLpryqL8Q0YAPjQlvjxdbWJd21m0EMsAWEUWYyENvQ0O631nSCSl3edHcsS30FfX4PWjW3CtbU7wzmUPZMgakwGnrFLqTaFt4x+jUD1DtaM+mzEFVIDw3C8nAOKEr/CxN2vnLYQUwdA7Pl7jpWYlBMTicVZTzFA1nPY6mMfRhbeHWQnpbw/W/CzCAMpXCQKSGtG0O5TpfLG42n5meKyzFMgVjdu7PEInRedNlF7k47OXS8W70FZupzilZuqVP/X2Q4kLLCMRF0KgYBPuIKHcn6odVi8vvDIP3di7gWquFpVrrq3nMFKWM9RrTdJShzCVjmqtMGsTtfWVgeKBFbzKQFdLXBGu+3e8rDD3zw40FAKZV4Poz6HrTFlnQsOw56v3THsuU3i08X+zToHIEsS/AnNEuT2rIvkECCCmp//4XKNLvWaXg0fKuRpiV09yQwuamV3QEK7andcG9k7tkAEhlsvyPVTWv+dqk+II5D6bm8qpr/13TWVzDEZtK1OiV1+oSwdjhRqvbwcTrb8z6IGjfru87ABIae4FuPEUwjhzm7OuSDv817iyK3K2E56rYXkOd8XruCGmEKJz0c+oxe2jqbvZyN/G+sudUmEbA3+afhYuTGNABm90/80BwsgvE62ysY529tFu5CaH1m8j6xekXGDoplIvV4iuVTeByF8hQidF502UXuT56xzasVzhy33obT/ptsGUINg6oCkO3R0WVZYOBXykkA6PWhgjb2kBoH18sQt53GWbiZDl7yi+/AVa924LcCrynW1DpkvSG5JchBkXLX07E76FVHDOl/oWhe0ShsdUl0sNE9wI9T8c75jIXkwLgI8qIG96wVUG1O0E3pa19DOFFOZaU3RmgcMThgAOrzMd7krEKQbdQxbyPyBIVU7lNMpBP3P4VUlvq7oFBi21RgLvNbwBNqyYRopecNzWHWBZqgwchBkXLX07E5gZnWgoWilQ4H18sQt53GWWu4ByH7fSAiVw3ZyqW/o26gnXnQVORxmJLTvV41+3BKZdWoWGz9V9bri1Rsu2K+g1vMhvrWFnv3Vnjka9+wosdPJ4/McvF3kMa9Fihj1d1rWna3QQSdq89qIA+aTiXXJK0WUl33PSREl/edeThpV+RF8E1D657W69/3aZVi10orUt4BHx8kuoSB7MJSCAI0z7jOAlBOBpK2f+cfH704D0n08tH67Lu4F4F6v8Ryy+QJ2tyiOTGcTRr4HqQuIQQ/X7Ez8uGyu6WU/5ccLISj8TXpQwo7YJE4j8G0rUn7ZW7uLJFQGlkveBl/i6cn9OC8QXLFndKZnK3LndXRfvMZfKI5dpAqhmiksOxVdTgwMEI+7zoH5mGJRjBIy0sCEVgRFtK18PiVKCj4EddyGEFnxKG+Yn69kscrT5oBNR2fKVxEnq4kZtu2pMBSCyHAYEZok/FwdD/pD+zJH1yWMmg9EZ35XQ1BaUWMaDZR2+Jv4Xqq01SWP7NxDCb6uWTBSbV11POErQ69ow7aCrD9M55FUzWFwcTx4bNhm/l5jo/3PEb+2Cs0w49CEaDTpOz/JuSe0JGmlW3w4uxeyqie0IokZ3hEvgMU4rhNJPGmCRptnH5hFskSmxyGowG1bO5RQi2MbJlJ/rjlXknYVjsSMWiBRSRgvrwz001DxxiNGfBQreXY9DV1Pu3FqIvbjl4+hRgCb9YOjb/Fumf4O2bPbYoBeNz1i4Wf9OmiqeuuPHuJhk2Nszt76/MixYx3w5adbiIvy6d5vf2tFz9M7FV1ODAwQj7vOgfmYYlGMlup+6mX4p4RsXf4Bhs+qJago8Hxl+8eMyOZr1OKJVb9gFQHkJU6CWEfJnyRfPEjBEHm3ns6at3jv2XOIG7jUNRMiTwuavoApkm70xktcSAEv7jzVOc0UGKEN25ek02Xmyd0WhUqkd0GJI32lmR7evzSMarJvGlyhQBjO+4PtpAID8UEHQz7airgW48RTCOHOrwkJ+/L0GmNYz1GtN0lKHMJWOaq0waxOPACwAWCmOmWsx/XflfE1bAidF502UXuTeHoriHOzg5gVHIAnh2NnUo8dbgelaVQntn176gzlEBHMUyBWN27s8Wmu2QqRlpeUAJTLrLMMu8lupJPxV4xwSk5hEUCHBh5Uph1rtHBAlplRu16p8hpF0UXD72DsLp9bnapPiCOQ+m5uJkOXvKL78PuhAu5q03RKqazDIKWFfs0jdUNqYp7N7SK5VN4HIXyFCJ0XnTZRe5PO9ruUdIngy+RxU4I3U3Ub9KyXokDYbud9NM6IsbIKXiFPwdMLWuya1GJUotNTLQbpELxXw2Jp6g24kJ9abrbVttOdUHLpei9yEGRctfTsTs1SELBXLrQoD+zS+CH6t3oHhDGiqGJ8+63ATvl5QT36j0YoSol7VwRagZy57RFtHsitythOeq2FwgYIkYTMs3fWMWYoRWFyITf8hB09lr5uLzXqcxenASVBO2XCD5DqiZsWLf5t2wnz5YxBlpFnDcf3SYpdkoNzWVJkV6Op8NlW9X+8gJ98NPH+NycQaPtwYTDfANvQH8pj2NMfYYhV+wfRM3n2JRrwSYDLD8eX1vUPXVzuB5Sfot6+l+hsgunWXtr5T9VEbYH9t2CP1wwyohOhsuFsV6MABGJkV/bsljCvF1y7nEeFYUPo47kyws8wsRhFgQn5ttX0ilwUVjSYMxwt4NwdQQRe0s3CsR3fKQtxvzpiRmESf1jgTlkKd3w6DIGI/V/YZHlTS6Se7cFaJpszTjIlKhbk25L9WcJfUOqobQK2WoaVq6kVSaRoIoSazQC3m136PCi/DO7Db5y+BQBCeyx3Zle6wIVQrITqsS3kKxxaZEwnpdpGfAss8uyo4FGgO4lgGKaSfth0xuAoVQdmKLpy+YKmhkGimKwTQ3/in5IwKEuceoIMkwDWbXEz9A4xc54SnE76xZ0BTirZqpxYdiJTcIMVyAhUqrYknCYvksG8oqYthRBF4tB6FjHZQQvoqYtXHm9BjjWl94nqgv1/pJquxYlOi24IQQNzdXVJFadIwZ3r5CBzDFfPZqWO3jXsVx6f4A6NNQI7ouBa5JtrTPak5N2vcjV0TN+HreYhbF3+AYbPqiWlE9qfI3wnG+/LBMdD+229MZBfQFnAmLfLPSe1urkgvFNVrNOPtBT5CI7WJ00uNnAmYHnMKm1TWVFfbNd9VWksjYZ4BDky5XlPzHwb5fHp94ox0pglS9SSY5vabn48XRtSir1ED6bFOdYtfiI5vPA0JDgnQYJ6MtMEoRtPmTkfNYY4D6NehC3P8/fUw9AzM4BG0yrcI7jOj3Y8waURmYO/F1P3FkUOAZOETIyP0F5lgPBL0Xq3B6nCfpcJAmJnYL6kQcPk13az4SQPnnVpPRKVNfNbY7CI1apehxeWwZortN0iom/FeYsF4oJbwGiQdXHjICjHGGcax0fTDAjchYiiU2Z30vf9WY2c/7K9mPTkkq4f6NbYBhPXakwGnrFLqTaFt4x+jUD1DtaM+mzEFVIDMZBfQFnAmLf125MkFyu7QkIFilShbY+3KPQWvWffuKeVq439NBk0c5kwtDysnKVjF1P3FkUOAZP79DehCCRwMWh6oBJSEdrFm7xcVuiaawChtBkZOtJzpXTrisz831JhSS4TQ9C5KJIAZbKUNdS5SLqT7bhmk49UEDXt3/Klf1U6T7PbRB3XLnbxwb/xXyh1tVlVjOFcjUk7Y4BGHyRwOWnszELT8kgACXvKj0QLnAT9dK5rvagzVTQBqNlIH9fPNHzLYdQi2nCVAGdKZ7Kdy/kxzpPNMepRM1DhKS85MOcEeHDd8Etts+q8HYQy8xnfqhCPYgvPTvgWDkNmkiZPAPuSzZoV2O/lwWuqSabQsKI1SL6BOJ6p/bPpEVfnfx756ICtPyn2nYS4f+j9/ehOs1o7WnErdJWA8F/2is+VoJ1TJIDzoqyRGgxF11Y7hszfZbCcJeMc3VzpWuzLXYAz2qsafgzOLBiySrEB/1Wi+e55BWa9l1G0J02dp/kFQIlBT4geg3e++ypYz1GtN0lKHMJWOaq0waxO7oqjNdLEjjUgoT6D85FZZh5pRjAyxVXwJd8mk4WLAm1wI9cgz1kVQoDhlNo7sePJh9IT+Ed/kqN27/K/TAQ6YWv01AW1wQDH0ay9+Ec0J2mIX99zjQmJldqFIQZhwQvck12MZWX8SHF8+2bxeXpAhtbhyH1cWm5UcKBWvvUzIwWmf6r3WrGkWR8nrwJhN0WEvfpkawUOoXTNBv5s9XuQQRXyOH0kco3PvBdDHoCer2IGiPVo/QSAoJWghZzXiSEi2DfxRvc0xvtDovM2pb/Q3ra7WtF43qWCWH/twRhElX34vFhRfqRjzUGmbsfOBd+zcmiPBX8mjP1ZfjC3BnKzUXP/fNqVfG7F/HzHgK8rj6JRumEFHa9NJYM4BZrRBWENNeboGTplZiVppGcli6Q+QJTCIt/UiYwCI8q4vix4sERnJwbT7VIUBK2744moDq23fLnSpc5H10gc5FAfhZ27Ie6CFG55FZiItS0Cxy8NoSGlfyj1sxslUevoXeAkxxMOPha4r+BXrFll8XCkAsvsvS0VI1kLNv3T70cDmIcCRQacjLC9souwCGWTXfepCxjxvVaUizUZEI5OpJkQJ6kTra2744moDq230E6fLaOa+aCAZP0D0R+4xcDgI+xvr169TcIVH2SQre3AU8JLMArJYxEIi75qp8FAJvt+EnNOgiuoJq3D0nfBiNGsvfhHNCdpiF/fc40JiZWO3T4OP2RDOTiL6YhFh++pzzYhW+0+STYbBNtQRN7Xccg9NOiVJ0hionBxBZepY86Pwq5ABTCCaMGUdat4htXs3ZyRuV78AEZH78bNEt8C9HCTMCica9n05/Qw/TXgDAYRNyNLykA82prnLnXwXDfRpDqsOHhz6DPPualxTJzz5xH1DgIejRVRnslfI1M3b0aA8orXEr0FvzCHVddYiF7jL3DQCNKjNj17FF5zDmA+hcOeCSiN8BCdRtEyrTnFT1BRcrRn9/eSymqLmadLDQy9/CUxG+mV2GbU/VzPYZwoF5wfUKYo5/ORMu5bu1KHmAP2FosmM9WCWgLYoAgNTfxlyCGvc/VbHDAzYnt7uGq+7McG9LlDtwb3JYPDngnvWxh036XnU3rhb3+kmq7FiU6LUmvK2ILkk9ohNYuzU238F+MIMt3YcSqTeGeN4GXpoH5kwPHKP9yjpL2k8MqvlzkbEeRR+b31VeC0z4s2Tx8EoGu+jswTX2HLUsHn2QHHpOa3m0xjBb1Ycvf3NNaAcOE+oewObnKtNNUOhBVJybeUIDtDQZBatIpVOzmrYwmcLSq77uU/2+e4x0PHxU3qCdA4tUi/xVz42sW2D6OdI1Yg+l5IOe34w36h/Fc5kjgt9WEK3WIWYK1iycenkhbx8TwSwmi+xV+Erjz6AKW5hr6KbLTPizZPHwSga76OzBNfYct7YFG8U9DgQo6Sg1YQLyyjmucudfBcN9GkOqw4eHPoM8+5qXFMnPPnFBvrHC7a778/5No1I7jA6wU1MiFb4aqtYjILQz7zawHyNxysEED/xZ1Is/s0NHLzq4NKcOf8Ite3eQ5Kbe/wv7d6ZYX7+at9mWtnfmCfQke7zoH5mGJRjIWdUbBkS/J0mXkG5bgUKq7Y9En/Q3wPHxawkJQDt5PAOXrws4KriL4XkyG+5yZoiXzXO3fDHNXm+Y+/brpWLBlSFGSkJwfVVNaM+mzEFVIDVNtGaxpbzLSvqFK2k29B4N1iM/CqdAjxH1zYcS8TJFW8EIq/zheudfxXWwAyLj9UFbLlHDtrEo6K9uq+kArZCjf28SHWdCcr3K3aiSkHU7OoOYLfxisGHrq5O3mbxmW4VOzvMtJfMZs/hMuFBgh8qMuS6/8TX+RntSMvtfcBGcgNpUqau8gAFFvnqDx0In1swWjMHBP0qkdDb/ZXNNVHsUfTDAjchYiiCIgP7YZKZjW/eGQewdk7sN/VvMAjZGzi6QbtklL/Vdprlfu4ou7tcdaM+mzEFVIDVNtGaxpbzLSjs38xwmjTl90gcXPl7dTti0D5D6nx8zqOBVxXXkAqEFpkgHhFPQ2kz/jC227pB1FPGO9jHes82IIonRf5keZAvCzgJMkhkv2WcCw4nsqbXR6+6NSI5cOQnWOekYvMFhT4Flzzw7GxOEMASUWM91T4ZZbwVb/lV8C/7zp6US1iAeyS8TLOGUD2JGbQ/vqPhGtLLJz3NmafEOOYz0Xqu408kCCsUGpJTBpRAXAG6btkVvZah2L8iKIpUK2AODkgUY57PsorX2kp5F1v9mmAHYO+By4yRhwOda+LDHuvpqV+zQKTpk7Em6w2bH+ngwqSI0I6Aq62bmtd4TV3/HvoBubNDLJIGfWsMBzS+0D3CLSMJlSlZTLjUjJiygVUFa1KqUY2YEOQkCNynMLol83b+bVj1mD7XSU8uhEvzhJqJ95WByeLIjbtBQR7XTDOvcFYfSni2V/1rYZ5+JPHwpwsMYHzJssir3Nrx/NQdvfbZO7DBoScVyvQvOpJGnlLEPg2UFZHK0VpavMb61mMxTE8tS4VAVlwI4VZQFV2vg+pT0ynUvHxb3O+7bBrGyjXG0N/wENK1JdyfpNomh0B1T0qCYQ5pQNjj8+p9kWdNM29Xo77jUKsSVcFWxdAWPwnJLA//jdMbaxxNSpQi3bxwb/xXyh1XDxh+GKoe7c5DWruLXpvsIKjjuSKaWP/QgyiyYJNCxsNUbI8GICH/sZ8koPanqfGNTQPBwZxhpZDlzOaVswYtue/lqQ1Z+QCZTmKGlObb+QbAPYsHvqktozBoAfxzLk2QgyiyYJNCxur3TZUkTP5GYmqhBtp375WHycc3u3JdWF01LrYMyg4R4fs0YTy3rsMUlIsbASr2LztfrNOPxwXDfhVnARPIF4pEwHDNsuFWLQzRWMBrOZTagSFooZX5Wq0qK7RpZ4jx5DOyFMHrvFeS8BsAnhS4sGSRo0Se6qgd2gd+XnzLRGopWAomYAq8WzE2ondcb8Uxj+WgEjJ9Tm22oxtjONXxUg5FbLlHDtrEo6K9uq+kArZCjtrHnZaxjZGxrtoL/GM+0p4cQhegybMle7bpoXB/X44AVlwI4VZQFUlwJPlXEP0LloTFXYrnBg/idba94fF7A6grS7Ouv4WwOsJE8lNVT91Hhg1SexaLQJ0tKFqlsmP3oNg6oCkO3R0FKYe8ae7BdHkXLXcmJSWaLHTu+0eCs3FQcT62xRNr1W+Jt9QkgM97AilOhrAG2s/bEvyTN1h5tzOVNzWgvfAg8DgI+xvr169bS80qyCeo7CWvwB9ilLe76fh/0bYRnUe7osO3K3ncIOVaAdlB2qcreOBTtGaUldmF1P3FkUOAZPe9omO1D4Pt61r6w/jYBJG04e/f0DVRtxLPk8yvjbmJo7Cw/+g1UXwCy2rCPGDDyPL5areEWqNW6y1XSP96PfGYoR1/v6rHHUiYDALfV6CsHEuYGshtUg+wOAj7G+vXr34QloBZqmX1J7mMKpuOsgKjYW3MnJUCvW75bpiAcIhxTRQX4/hFyX5XJpvntPjZZBktqzdmz2iEueOegtVwghgjvTIST/cGn+zCD2q4kTxumnP83xJaU7ZvmPGnK1MRm5RgfBYX5yzIbqPZ+XPemE4U8bXN8HQVvEfXNhxLxMkVR1R3k/l9Lpsu/1q32XTPVsL7bszpk9r1K5yM/svuTUyM+WS+DY0tyn7uKAxoMC/2+XO0gHS/bDYwOAj7G+vXr0jS1nVHBm3RJE2MoItRBerjr4AB71b6T2Z7P1GfgDX2s3dLGmEJTmpqCdedBU5HGZi1PvBNrkIVYo/6A+yIx0zQD1Ehwat3aU2gL64cS0cvMJnxpt8QtUnVQlytT0dg0roxatHzBlVwguQTsH5ytUqVK1ccg9wzx7suY3W835q00CGJjKVhCyuzQb+bPV7kEGM+eyuUEjb2SQTCSrXW9L+qngVqPSR/AOqm9S25jhUWoLlVdqOu945a1EIKb6AbIrA43grS2XoDL/IlmbeDK7Woe3GxCpv2WB2dYvbyfZ889kgKzizGXKDLqFEG/54JGK9Tt7UztVvHzrC/POUB1b/GhvZQc7weju748V29VUn2eYczjZBenSXSwGfjGeQxgfLNHj9nTfS0Nci2zaNhQTKV9dTv0ABmDFbi9WBJmU/WpQTE4nFWU8xk12MZWX8SHEXf9e4vwVzQypEqV8dbxzCiUWw7qaDthde/JRMv8397UkQ+xir4AzovfpkawUOoXTNBv5s9XuQQRXyOH0kco3PvBdDHoCer2IGiPVo/QSAoJWghZzXiSEitrFTt9tWigWwLLyIt8TDIYqD59NYY2xgWH/twRhElX34vFhRfqRjzQ10LqANLeuCCh1+N+wsWWVZfjC3BnKzUXqPasaKvgak/HzHgK8rj6JRumEFHa9NJYM4BZrRBWENVXK3Cf4FZEbqBrMtCQzOGzB3nPEECWEbK0WUl33PSRGcnP04+AmNCqdPkucE+kFXGMTtrIxp6w4QDN3Mpz9Gan5asWiTm3SsO1IjpETqfCJtArZahpWrqe6GleClbQiPrR+iTFwq2hSwsY4K2Tyz3uVANUzmexLI0vEsOd5Hnwk7fAlBxjQsiJG3Dy3KdypN1oz6bMQVUgP8S7cY08hv2rd0khg2mpWamS0TdescdW01/I0dlv9lBVlM6RzP+Zd14ISsxgtYE9WOd5qCz3ZkHupXEDzuF6M9mS0TdescdW01/I0dlv9lBVlM6RzP+Zd1XXw+zb4wQ2fiSgBHoUBNx7XF0DfoFtUdLvuw750klzl1a6hOGyzQicT36iJqULmwT4mGDokEa9rK2X6UEWlEfm03udz0SgxkT9UJ133wnClCqsSI0mYCyme7Od9mcqQwEn35CfhW+r7TpvfhwgPTOqcJwSiDeUPvk+ItTDmwNmuYtiLru9tn0I0a2tC2FuZQRK0vhEpbdNrFf3Ffz8Y6IvQPgfc7d3dNnJWF5Ou9k3/xmzRc+dxquqAZXO5s/xk3yVQbWrYqZu5tArZahpWrqbuLrRKg9xcMJnX53d2d5LFmMM+jw7OcBhE5mrEVtJJyxc84MOprPThzHQI2oicZ3OwFJIOBM9KqKh/N92CnEKqlL5Qs8H88bCL2WcrnqAScYKCfObg+EcTlB57Ea0Rmq/2UB3NBDdGgO1IjpETqfCLTM3x5v02RFPL5fMtiPlBeHEtLdv93+JD18Mlwn207Y3F3LL9p//fVowQo4G7XSdPlRCSxr6QziPq1Cu1Jqri51oz6bMQVUgNNxdX6ohgwWhs/yKNm7cJFtX9TBqNTO/V6ExIzxzI+Qy3mhNSE0yD0gICmKgU2N7pO+/w43F1n32k0qQKB4Pp2lCQ3hZgMfhVtArZahpWrqYKhtsjDiXOVt1zIo8DQXwqtttgA4RN1mSbBITXbqDvax6aGmbhK8knGtT5axTGEczwRDF+6LDfaB0Ds+XuOlZjzxEv+gAadxTJvB2sBid9oo/VNIK526gk/kCVA4dbz8n5hFe6F3DQkxUEE8gwLErP4uLSdSqtAzs4hLfA5yMHCMakncblNIGSkBQ4eMlaPjfk5zun+wyOjQ+1kteiKRmSIbXbRz8iTm3vSge4i6JDTXmSwun46iOZRfOCu86BCfM4JgQoYzV84RUUIJekrjTC7KicKePcawHMf0egdecdM88+C2IYlgXJRfOCu86BCfNSy6zPwbq3phTR7r5C2/gmYgBjMFsprxdCmd/IH8xDEzB54ewqakNGIbXbRz8iTmw2+CKI7nEJaJdKn8UgiTIS1IuQjtW0YXx3xWHY6l2XF45H+I89Ra2K3m0xjBb1Ycoy5g5UrpvLfTV0oZ5GwShm+/jQjWDg4AfLkwl+15YNTU1Ws04+0FPn/WhKbyRwCBN6vlhzZIhMgezAsED2D7m2pZfew9XKMKD9mPEAgI0ivHxY5ESIWZqPtAs+ZDTVXyPW4nDKxhtbmRikz87xieuQOJa4fUH2hzyqUk8dqu7mTMYAwUAP+9Uf69aRW0NkTkuDpliSAypdXYctrx1eC9Lm1gYZ+qi4LP53KHbraYqKf5YFkSz5SxxFpZ9Ps7rncYfSziWrtnDXTrTkXAA7clOfw9kcCtziz3tMCPak2xCJXOsL885QHVv8aG9lBzvB6O7vjxXb1VSfZ5hzONkF6dJdLAZ+MZ5DGB7XYsokqTaYOMvhxUHnfy0Ai9f3Wr8M37YQonAxa9lUN/C/AQ6UmAg3rnW4kgNbBPH+vLOHwpL5dKP9BvKyfTfwZx9l/K7GpjTxotGPDQmTCtYGGfqouCz8wYCu79Yxd1d52e8dyZAxdtDsvmQvMr5+jtUDokMkt8IER7+bKlfqP3cPzCf+uk0dcRGJyD3jOoLfeaYnyXGEBvWlLWktuAWKKNGPqjI4Po3Jvg0I3TsIob0Ne2caK9S69LiV60DD9ZA15VrZulsoK0s4If9AUxtpyaGghX5lu06qU0buuZ1mu1Fh4dYOaC3F2JgbjelzAVGrf/ZkPetMXUJh7d5h5+nGt2iABRLy/BZghavAspZrvycFtAAXQyrJrCMV+IjlGEFe7qhe9tqmNJIb/V0SF3YoffNAKYpdaTCsX16LvVZ7RZTp27JUwxvAAMnnJZoIo+rigH1vgp+ggfgD/ODTO+xAjPFTJYpbdSuxW/gvz4wZKH7SqgLJzYdjp+StTbCnvglMxBntac6eoWBNYVAzEIPfLlBzzRAwiUBso1xtDf8BDf7x0lX4sRZRdbVzGkxWahcM/GQOI5Q2Rw5qaQ/pVvvRDgVnSKpsUp41TWBBMZjZXyyEfMdVQqKES9Yyt8j0t5DHzUVgE44B0pcqdCARHOZD6kxweTkRJE6QFDh4yVo+NUMZ2PtuxXP1e6A/OOd3jyn7cfcahBxfbFix0QtNn1i6/a6YECtjTI6pw4jqqp5dauGy29AR2JUe3kQ0pVqxJXxGRfWCdPLm3qLGZtgqm3B8j8FA7Fb1ulQ9lRhxvsSA9UGChHVkjjZzBb4ILkgJGGTK3rX1bziA4kqUkYfxya28S9Yyt8j0t5JMFJHR2OADZVXSe6WjHHIzSunYlBQ3BOLDX7FZ+/jGrzhNtUZy192EJgIYFxm6P4RUywCyfLL37JZHqxbaEFy1vwV5tVH3mMYJ7qWWztXYkx4TU/4Hsu79ed/p8boyQG5bSGN8M+S8NY7znqPaRn7s9RxtUeKKWHpf2kAvQGeSeYc7ETI3jVNYuI+L1TsUtGMgSaVjdZ5+Y9gAlIeT/rc55yDiul+8b5X5vNP02X3CByXdcpnWYx1WQ1hHi1LYrW7cT8KQnRLKhEwY1yXSFXvbY04iPWgBilfTPl3ZsfmPwXS3IZxdIQi90jvycpFwCSIUy9fX4oggj+RbxTBJyRrvNONZDg+EpFiZcJG5V9IFxZttoh7UfV3BEpkZKdH7XlPwoEF6yHvjv6MYKW4j2dmtSa8rYguST2quDSnDn/CLXwhpWEmFYJcA39vEh1nQnKwFI4g3WOHvXnZYPad6OmHhYRV3s+8WzD9zgjXFZ7DSniAytM1nImOT7wbuuX3m3V27j47tdJMz4XMtQL9y1/nDeT6SrPghCMmv38tLtUFGLMOSA/OPsnfd1GDXj7QY2mHLHyU3BrPgXB5I38Cd9rB5b2iCPDBEUKGWflXEEgTMn11OJpHNGYwjQn58cT85Ono6skB0LR6EIB0HC+OpDDL/x/H5SL4J5RI6skB0LR6EIlXtyK5xzpd3WUkz9ZZ6KTYEUvwJZCMvNvHT7NCyEV0zCOIbd/bVN9u4QedS2LPC7QHnp5oPILq5wt47XaxARpFvFqefvOKUIVy1ib4dceS/Xm/aSr650oRpVsh/bm5klbo2QD3i8WirHtW+DYBGyRZaBbOdZBytKAVFRfG5WtTnSPkcjWNYciYug5FVRiBp3ZgrIGosCNBYFYZh5cqVPBeuocVW27TruitUxQG5gwng/qsoeNOV/iEYWjUcACaoDSReUOstgDI0Ajwu9UOWVZafUcrfkQC7cqK7RpZ4jx5DOyFMHrvFeSwKO02JPeIj6NfNbY7CI1apm6eJpz6XeUIhf33ONCYmVxZ0BTirZqpwWtN2r7eS/kO6YcyVMKy9BSJDD+Sg7Z3Y9BH6cGkhsmHkwKkVC1yWlpAUOHjJWj424bLb0BHYlR2hsfs1p8svExTjwfl/QpnPvPTHKPXalxHPBkhuuL0ddCt1iFmCtYslV4u3JS4LxZ9xiU7ji5lL+fn+Y+Qyo51PyboTtSgxay1o7WnErdJWA8F/2is+VoJ1TJIDzoqyRGgxF11Y7hszfZbCcJeMc3VxxQkr3x7WKzijwkGiEIdv/DbXEFnpGiiYnfm52iZwd4iDyHUnGk1AEXNJY6KZeuo4='
function decrypt_data(encrypt_data){
data = s(encrypt_data)
return data
}
总结
本文主用于学习记录,有问题希望大牛指出,多多学习交流