单链表逆转模板
Ptr Reverse (Ptr head,int K){
cnt=1;
new=head->next;
old=new->next;
while(cnt<K){
tmp=old->next;
old->next=new;
new=old;
old=tmp;
cnt++;
}
head->next->next=old;
return new;
}
//定义性声明均省略
new指针指向已经逆转好的链表,
old指针指向还未逆转好的链表,
tmp指针暂存链表地址防止数据丢失。
例题 Reversing Linked List
Given a constant K and a singly linked list L, you are supposed to reverse the links of every K elements on L. For example, given L being 1→2→3→4→5→6, if K=3, then you must output 3→2→1→6→5→4; if K=4, you must output 4→3→2→1→5→6.
Input Specification:
Each input file contains one test case. For each case, the first line contains the address of the first node, a positive N (≤105) which is the total number of nodes, and a positive K (≤N) which is the length of the sublist to be reversed. The address of a node is a 5-digit nonnegative integer, and NULL is represented by -1.
Then N lines follow, each describes a node in the format:
Address Data Next
where Address
is the position of the node, Data
is an integer, and Next
is the position of the next node.
Output Specification:
For each case, output the resulting ordered linked list. Each node occupies a line, and is printed in the same format as in the input.
Sample Input:
00100 6 4
00000 4 99999
00100 1 12309
68237 6 -1
33218 3 00000
99999 5 68237
12309 2 33218
Sample Output:
00000 4 33218
33218 3 12309
12309 2 00100
00100 1 99999
99999 5 68237
68237 6 -1
Demo:
#include<iostream>
#include<string>
using namespace std;
typedef struct node* nodePtr;
struct node {
string address;
int data;
string nextAddress;
nodePtr next;
};
nodePtr Reverse(nodePtr head, int K, int N) {
int cnt = 1;
nodePtr newPtr = NULL, oldPtr = NULL, tmpPtr = NULL, headPtr = NULL;
for (int i = 0; i < N / K; i++) {
cnt = 1;
if (i==1) head = head->next;
newPtr = head->next;
oldPtr = newPtr->next;
while (cnt < K) {
tmpPtr = oldPtr->next;
oldPtr->next = newPtr;
oldPtr->nextAddress = newPtr->address;
newPtr = oldPtr;
oldPtr = tmpPtr;
cnt++;
}
if (!i) headPtr = newPtr;
(head->next)->next = oldPtr;
if (oldPtr != NULL) {
(head->next)->nextAddress = oldPtr->address;
}
else (head->next)->nextAddress = -1;
if (i) {
tmpPtr = head;
if(i>=1) head=head->next;
tmpPtr->next =newPtr;
tmpPtr->nextAddress = newPtr->address;
}
}
return headPtr;
}
int main() {
int n, reverse;
int cnt=1;
string headAddress;
cin >> headAddress >> n >> reverse;
node node[n+1];
nodePtr HeadPtr=NULL, NewHead=NULL;
for (int i = 1; i <=n; i++) {
cin >> node[i].address >> node[i].data >> node[i].nextAddress;
}
if(n==1){
cout << node[1].address << " " << node[1].data << " " << "-1" << endl;
return 0;
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
if (node[i].nextAddress == node[j].address){
node[i].next = &node[j];
cnt++;
break;
}
}
if (headAddress == node[i].address){
node[0].next = &node[i];
HeadPtr = &node[0];
}
if (node[i].nextAddress == "-1") node[i].next = NULL;
}
if(reverse == 1) NewHead = HeadPtr->next;
else NewHead = Reverse(HeadPtr, reverse, cnt);
while (1) {
cout << NewHead->address << " " << NewHead->data << " " << NewHead->nextAddress << endl;
if (NewHead->next == NULL) break;
NewHead = NewHead->next;
}
return 0;
}
//使用string存储当前地址和下一地址值
优化:
以上代码中,连接链表时使用了两层for循环,时间复杂度为O(n^2),当n值较大时,易出现运行时间过长的问题。因此可以将数组的下标作为链表的地址值,在创建新链表时即可将链表连接起来。同时运用iomanip头文件中的setfill函数和setw函数方便地址值的输出。
#include<iostream>
#include<string>
#include<iomanip>
using namespace std;
typedef struct node* nodePtr;
struct node {
int address;
int data;
int nextAddress;
nodePtr next;
};
nodePtr Reverse(nodePtr head, int K, int N) {
int cnt = 1;
nodePtr newPtr = NULL, oldPtr = NULL, tmpPtr = NULL, headPtr = NULL;
for (int i = 0; i < N / K; i++) {
cnt = 1;
if (i==1) head = head->next;
newPtr = head->next;
oldPtr = newPtr->next;
while (cnt < K) {
tmpPtr = oldPtr->next;
oldPtr->next = newPtr;
oldPtr->nextAddress = newPtr->address;
newPtr = oldPtr;
oldPtr = tmpPtr;
cnt++;
}
if (!i) headPtr = newPtr;
(head->next)->next = oldPtr; //实现反向链表和正向链表的连接
if (oldPtr != NULL) {
(head->next)->nextAddress = oldPtr->address;
}
else (head->next)->nextAddress = -1;
if (i) {
tmpPtr = head;
if(i>=1) head=head->next; //将head指针指向反向链表的最后一个
tmpPtr->next =newPtr; //实现当前反向链表段与上一反向链表段的连接
tmpPtr->nextAddress = newPtr->address;
}
}
return headPtr; //返回头节点
}
int main() {
int n, reverse;
int cnt = 0;
int headAddress;
int Index;
cin >> headAddress >> n >> reverse;
node node[100005];
nodePtr HeadPtr = NULL, NewHead = NULL;
for (int i = 1; i <= n; i++) { //node[0]作为空链表
cin >> Index;
node[Index + 1].address = Index;
cin >> node[Index + 1].data >> node[Index + 1].nextAddress;
if (node[Index + 1].nextAddress == -1) node[Index+1].next = NULL;
else node[Index + 1].next = &node[node[Index + 1].nextAddress + 1];
}
node[0].next = &node[headAddress + 1];
HeadPtr = &node[0];
while(HeadPtr->next!= NULL){
HeadPtr=HeadPtr->next;
cnt++;
}
HeadPtr = &node[0];
if (n == 1) {
cout << setfill('0');
cout << setw(5) << HeadPtr->next->address << " " << HeadPtr->next->data << " " << "-1" << endl;
return 0;
}
if (reverse == 1) NewHead = HeadPtr->next;
else NewHead = Reverse(HeadPtr, reverse, cnt);
while (1) {
cout << setfill('0');
if(NewHead->nextAddress!=-1 )
cout << setw(5) << NewHead->address << " " << NewHead->data << " " << setw(5) << NewHead->nextAddress << endl;
else cout << setw(5) << NewHead->address << " " << NewHead->data << " " << NewHead->nextAddress << endl;
if (NewHead->next == NULL) break;
NewHead = NewHead->next;
}
return 0;
}
//使用int存储当前地址和下一地址值(00100存储为int类型后值为100)
//利用setfill函数和setw函数在int类型前添加0以实现地址值的输出