Pandas的数据转换函数

Pandas的数据转换函数:map, apply, applymap

参数描述
map只用于Series,实现每个值->值的映射
apply用于Series实现每个值的处理,用于DataFrame实现某个轴的Series的处理
applymap只能用于DataFrame, 用于处理该DataFrame的每个元素

1. map用于Series值的转换

  • 将股票代码英文转换成中文名字
  • Series.map(dict) or Series.map(function)均可
import pandas as pd
file_path = r'C:\TELCEL_MEXICO_BOT\A\互联网公司股票.xlsx'
stocks = pd.read_excel(file_path)

print(stocks)
           日期    公司       收盘      开盘       高       低    交易量   涨跌幅
0  2019-10-03  BIDU   104.32  102.35  104.73  101.15   2.24  0.02
1  2019-10-02  BIDU   102.62  100.85  103.24   99.50   2.69  0.01
2  2019-10-01  BIDU   102.00  102.80  103.26  101.00   1.78 -0.01
3  2019-10-03  BABA  1169.48  166.65  170.18  165.00  10.39  0.02
4  2019-10-02  BABA   165.77  162.82  166.88  161.90  11.60  0.00
5  2019-10-01  BABA   165.15  168.01  168.23  163.64  14.19 -0.01
6  2019-10-03    IQ    16.06   15.71   16.38   15.32  10.08  0.02
7  2019-10-02    IQ    15.72   15.85   15.87   15.12   8.10 -0.01
8  2019-10-01    IQ    15.92   16.14   16.22   15.50  11.65 -0.01
9  2019-10-03    JD   128.80   28.11   28.97   27.82   8.77 -0.03
10 2019-10-02    JD   128.06   28.00   28.22   27.53   9.53  0.00
11 2019-10-01    JD    28.19   28.22   28.57   27.97  10.64  0.00

print(stocks['公司'].unique())
['BIDU' 'BABA' 'IQ' 'JD']

## 公司股票代码到中文的映射,注意这是小写
dict_company_names = {'bidu':'百度',
                            'baba':'阿里巴巴',
                            'iq':'爱奇艺',
                            'jd':'京东'}
## 方法1: Series.map(dict)
stocks['公司中文'] = stocks['公司'].str.lower().map(dict_company_names) 
print(stocks)
           日期    公司       收盘      开盘       高       低    交易量   涨跌幅  公司中文
0  2019-10-03  BIDU   104.32  102.35  104.73  101.15   2.24  0.02    百度
1  2019-10-02  BIDU   102.62  100.85  103.24   99.50   2.69  0.01    百度
2  2019-10-01  BIDU   102.00  102.80  103.26  101.00   1.78 -0.01    百度
3  2019-10-03  BABA  1169.48  166.65  170.18  165.00  10.39  0.02  阿里巴巴
4  2019-10-02  BABA   165.77  162.82  166.88  161.90  11.60  0.00  阿里巴巴
5  2019-10-01  BABA   165.15  168.01  168.23  163.64  14.19 -0.01  阿里巴巴
6  2019-10-03    IQ    16.06   15.71   16.38   15.32  10.08  0.02   爱奇艺
7  2019-10-02    IQ    15.72   15.85   15.87   15.12   8.10 -0.01   爱奇艺
8  2019-10-01    IQ    15.92   16.14   16.22   15.50  11.65 -0.01   爱奇艺
9  2019-10-03    JD   128.80   28.11   28.97   27.82   8.77 -0.03    京东
10 2019-10-02    JD   128.06   28.00   28.22   27.53   9.53  0.00    京东
11 2019-10-01    JD    28.19   28.22   28.57   27.97  10.64  0.00    京东

## 方法2:Series.map(function), function的参数是Series的每个元素的值
print(stocks)
           日期    公司       收盘      开盘       高       低    交易量   涨跌幅
0  2019-10-03  BIDU   104.32  102.35  104.73  101.15   2.24  0.02
1  2019-10-02  BIDU   102.62  100.85  103.24   99.50   2.69  0.01
2  2019-10-01  BIDU   102.00  102.80  103.26  101.00   1.78 -0.01
3  2019-10-03  BABA  1169.48  166.65  170.18  165.00  10.39  0.02
4  2019-10-02  BABA   165.77  162.82  166.88  161.90  11.60  0.00
5  2019-10-01  BABA   165.15  168.01  168.23  163.64  14.19 -0.01
6  2019-10-03    IQ    16.06   15.71   16.38   15.32  10.08  0.02
7  2019-10-02    IQ    15.72   15.85   15.87   15.12   8.10 -0.01
8  2019-10-01    IQ    15.92   16.14   16.22   15.50  11.65 -0.01
9  2019-10-03    JD   128.80   28.11   28.97   27.82   8.77 -0.03
10 2019-10-02    JD   128.06   28.00   28.22   27.53   9.53  0.00
11 2019-10-01    JD    28.19   28.22   28.57   27.97  10.64  0.00

dict_company_names = {'bidu':'百度',
                            'baba':'阿里巴巴',
                            'iq':'爱奇艺',
                            'jd':'京东'}
stocks['公司中文2'] = stocks['公司'].map(lambda x:dict_company_names[x.lower()])
print(stocks)
           日期    公司       收盘      开盘       高       低    交易量   涨跌幅 公司中文2
0  2019-10-03  BIDU   104.32  102.35  104.73  101.15   2.24  0.02    百度
1  2019-10-02  BIDU   102.62  100.85  103.24   99.50   2.69  0.01    百度
2  2019-10-01  BIDU   102.00  102.80  103.26  101.00   1.78 -0.01    百度
3  2019-10-03  BABA  1169.48  166.65  170.18  165.00  10.39  0.02  阿里巴巴
4  2019-10-02  BABA   165.77  162.82  166.88  161.90  11.60  0.00  阿里巴巴
5  2019-10-01  BABA   165.15  168.01  168.23  163.64  14.19 -0.01  阿里巴巴
6  2019-10-03    IQ    16.06   15.71   16.38   15.32  10.08  0.02   爱奇艺
7  2019-10-02    IQ    15.72   15.85   15.87   15.12   8.10 -0.01   爱奇艺
8  2019-10-01    IQ    15.92   16.14   16.22   15.50  11.65 -0.01   爱奇艺
9  2019-10-03    JD   128.80   28.11   28.97   27.82   8.77 -0.03    京东
10 2019-10-02    JD   128.06   28.00   28.22   27.53   9.53  0.00    京东
11 2019-10-01    JD    28.19   28.22   28.57   27.97  10.64  0.00    京东





2. apply用于Series和DataFrame的转换

  • Series.apply(function), 函数的参数是每个值
  • DataFrame.apply(function),函数的参数是Series
import pandas as pd
import numpy as np
file_path = r'C:\TELCEL_MEXICO_BOT\A\互联网公司股票.xlsx'
stocks = pd.read_excel(file_path)
print(stocks)
           日期    公司       收盘      开盘       高       低    交易量   涨跌幅
0  2019-10-03  BIDU   104.32  102.35  104.73  101.15   2.24  0.02
1  2019-10-02  BIDU   102.62  100.85  103.24   99.50   2.69  0.01
2  2019-10-01  BIDU   102.00  102.80  103.26  101.00   1.78 -0.01
3  2019-10-03  BABA  1169.48  166.65  170.18  165.00  10.39  0.02
4  2019-10-02  BABA   165.77  162.82  166.88  161.90  11.60  0.00
5  2019-10-01  BABA   165.15  168.01  168.23  163.64  14.19 -0.01
6  2019-10-03    IQ    16.06   15.71   16.38   15.32  10.08  0.02
7  2019-10-02    IQ    15.72   15.85   15.87   15.12   8.10 -0.01
8  2019-10-01    IQ    15.92   16.14   16.22   15.50  11.65 -0.01
9  2019-10-03    JD   128.80   28.11   28.97   27.82   8.77 -0.03
10 2019-10-02    JD   128.06   28.00   28.22   27.53   9.53  0.00
11 2019-10-01    JD    28.19   28.22   28.57   27.97  10.64  0.00

dict_company_names = {'bidu':'百度',
                            'baba':'阿里巴巴',
                            'iq':'爱奇艺',
                            'jd':'京东'}

## Series.apply(function)

stocks['公司中文3'] = stocks['公司'].apply(lambda x:dict_company_names[x.lower()] )
print(stocks)
           日期    公司       收盘      开盘       高       低    交易量   涨跌幅 公司中文3
0  2019-10-03  BIDU   104.32  102.35  104.73  101.15   2.24  0.02    百度
1  2019-10-02  BIDU   102.62  100.85  103.24   99.50   2.69  0.01    百度
2  2019-10-01  BIDU   102.00  102.80  103.26  101.00   1.78 -0.01    百度
3  2019-10-03  BABA  1169.48  166.65  170.18  165.00  10.39  0.02  阿里巴巴
4  2019-10-02  BABA   165.77  162.82  166.88  161.90  11.60  0.00  阿里巴巴
5  2019-10-01  BABA   165.15  168.01  168.23  163.64  14.19 -0.01  阿里巴巴
6  2019-10-03    IQ    16.06   15.71   16.38   15.32  10.08  0.02   爱奇艺
7  2019-10-02    IQ    15.72   15.85   15.87   15.12   8.10 -0.01   爱奇艺
8  2019-10-01    IQ    15.92   16.14   16.22   15.50  11.65 -0.01   爱奇艺
9  2019-10-03    JD   128.80   28.11   28.97   27.82   8.77 -0.03    京东
10 2019-10-02    JD   128.06   28.00   28.22   27.53   9.53  0.00    京东
11 2019-10-01    JD    28.19   28.22   28.57   27.97  10.64  0.00    京东

## DataFrame.apply(function)

stocks['公司中文4'] = stocks.apply(lambda x:dict_company_names[x['公司'].lower()], axis=1)
print(stocks)
           日期    公司       收盘      开盘       高       低    交易量   涨跌幅 公司中文4
0  2019-10-03  BIDU   104.32  102.35  104.73  101.15   2.24  0.02    百度
1  2019-10-02  BIDU   102.62  100.85  103.24   99.50   2.69  0.01    百度
2  2019-10-01  BIDU   102.00  102.80  103.26  101.00   1.78 -0.01    百度
3  2019-10-03  BABA  1169.48  166.65  170.18  165.00  10.39  0.02  阿里巴巴
4  2019-10-02  BABA   165.77  162.82  166.88  161.90  11.60  0.00  阿里巴巴
5  2019-10-01  BABA   165.15  168.01  168.23  163.64  14.19 -0.01  阿里巴巴
6  2019-10-03    IQ    16.06   15.71   16.38   15.32  10.08  0.02   爱奇艺
7  2019-10-02    IQ    15.72   15.85   15.87   15.12   8.10 -0.01   爱奇艺
8  2019-10-01    IQ    15.92   16.14   16.22   15.50  11.65 -0.01   爱奇艺
9  2019-10-03    JD   128.80   28.11   28.97   27.82   8.77 -0.03    京东
10 2019-10-02    JD   128.06   28.00   28.22   27.53   9.53  0.00    京东
11 2019-10-01    JD    28.19   28.22   28.57   27.97  10.64  0.00    京东

## 注意在这个代码中
1. apply 是在stocks这个DataFrame上调用
2. lambda x 的 x是一个Series,因为指定了axis=1,所以Series的key是列名,可以用x['公司']获取

3. applymap用于DataFrame所有值的转换

import pandas as pd

file_path = r'C:\TELCEL_MEXICO_BOT\A\互联网公司股票.xlsx'
stocks = pd.read_excel(file_path)
print(stocks)
           日期    公司       收盘      开盘       高       低    交易量   涨跌幅
0  2019-10-03  BIDU   104.32  102.35  104.73  101.15   2.24  0.02
1  2019-10-02  BIDU   102.62  100.85  103.24   99.50   2.69  0.01
2  2019-10-01  BIDU   102.00  102.80  103.26  101.00   1.78 -0.01
3  2019-10-03  BABA  1169.48  166.65  170.18  165.00  10.39  0.02
4  2019-10-02  BABA   165.77  162.82  166.88  161.90  11.60  0.00
5  2019-10-01  BABA   165.15  168.01  168.23  163.64  14.19 -0.01
6  2019-10-03    IQ    16.06   15.71   16.38   15.32  10.08  0.02
7  2019-10-02    IQ    15.72   15.85   15.87   15.12   8.10 -0.01
8  2019-10-01    IQ    15.92   16.14   16.22   15.50  11.65 -0.01
9  2019-10-03    JD   128.80   28.11   28.97   27.82   8.77 -0.03
10 2019-10-02    JD   128.06   28.00   28.22   27.53   9.53  0.00
11 2019-10-01    JD    28.19   28.22   28.57   27.97  10.64  0.00

sub_df = stocks[['收盘', '开盘','高', '低', '交易量']]
print(sub_df)
   收盘      开盘       高       低    交易量
0    104.32  102.35  104.73  101.15   2.24
1    102.62  100.85  103.24   99.50   2.69
2    102.00  102.80  103.26  101.00   1.78
3   1169.48  166.65  170.18  165.00  10.39
4    165.77  162.82  166.88  161.90  11.60
5    165.15  168.01  168.23  163.64  14.19
6     16.06   15.71   16.38   15.32  10.08
7     15.72   15.85   15.87   15.12   8.10
8     15.92   16.14   16.22   15.50  11.65
9    128.80   28.11   28.97   27.82   8.77
10   128.06   28.00   28.22   27.53   9.53
11    28.19   28.22   28.57   27.97  10.64

## 将这些数据取整数,应用于所有元素
print(sub_df.applymap(lambda x:int(x)))
   收盘   开盘    高    低  交易量
0    104  102  104  101    2
1    102  100  103   99    2
2    102  102  103  101    1
3   1169  166  170  165   10
4    165  162  166  161   11
5    165  168  168  163   14
6     16   15   16   15   10
7     15   15   15   15    8
8     15   16   16   15   11
9    128   28   28   27    8
10   128   28   28   27    9
11    28   28   28   27   10

## 直接修改原df的这几列

stocks.loc[:,['收盘', '开盘','高', '低', '交易量']] = sub_df.applymap(lambda x:int(x))
print(stocks)

 日期    公司    收盘   开盘    高    低  交易量   涨跌幅
0  2019-10-03  BIDU   104  102  104  101    2  0.02
1  2019-10-02  BIDU   102  100  103   99    2  0.01
2  2019-10-01  BIDU   102  102  103  101    1 -0.01
3  2019-10-03  BABA  1169  166  170  165   10  0.02
4  2019-10-02  BABA   165  162  166  161   11  0.00
5  2019-10-01  BABA   165  168  168  163   14 -0.01
6  2019-10-03    IQ    16   15   16   15   10  0.02
7  2019-10-02    IQ    15   15   15   15    8 -0.01
8  2019-10-01    IQ    15   16   16   15   11 -0.01
9  2019-10-03    JD   128   28   28   27    8 -0.03
10 2019-10-02    JD   128   28   28   27    9  0.00
11 2019-10-01    JD    28   28   28   27   10  0.00

内容概要:本文详细介绍了一种基于Simulink的表贴式永磁同步电机(SPMSM)有限控制集模型预测电流控制(FCS-MPCC)仿真系统。通过构建PMSM数学模型、坐标变换、MPC控制器、SVPWM调制等模块,实现了对电机定子电流的高精度跟踪控制,具备快速动态响应和低稳态误差的特点。文中提供了完整的仿真建模步骤、关键参数设置、核心MATLAB函数代码及仿真结果分析,涵盖转速、电流、转矩和三相电流波形,验证了MPC控制策略在动态性能、稳态精度和抗负载扰动方面的优越性,并提出了参数自整定、加权代价函数、模型预测转矩控制和弱磁扩速等优化方向。; 适合人群:自动化、电气工程及其相关专业本科生、研究生,以及从事电机控制算法研究与仿真的工程技术人员;具备一定的电机原理、自动控制理论和Simulink仿真基础者更佳; 使用场景及目标:①用于永磁同步电机模型预测控制的教学演示、课程设计或毕业设计项目;②作为电机先进控制算法(如MPC、MPTC)的仿真验证平台;③支撑科研中对控制性能优化(如动态响应、抗干扰能力)的研究需求; 阅读建议:建议读者结合Simulink环境动手搭建模型,深入理解各模块间的信号流向与控制逻辑,重点掌握预测模型构建、代价函数设计与开关状态选择机制,并可通过修改电机参数或控制策略进行拓展实验,以增强实践与创新能力。
根据原作 https://pan.quark.cn/s/23d6270309e5 的源码改编 湖北省黄石市2021年中考数学试卷所包含的知识点广泛涉及了中学数学的基础领域,涵盖了实数、科学记数法、分式方程、几何体的三视图、立体几何、概率统计以及代数方程等多个方面。 接下来将对每道试题所关联的知识点进行深入剖析:1. 实数与倒数的定义:该题目旨在检验学生对倒数概念的掌握程度,即一个数a的倒数表达为1/a,因此-7的倒数可表示为-1/7。 2. 科学记数法的运用:科学记数法是一种表示极大或极小数字的方法,其形式为a×10^n,其中1≤|a|<10,n为整数。 此题要求学生运用科学记数法表示一个天文单位的距离,将1.4960亿千米转换为1.4960×10^8千米。 3. 分式方程的求解方法:考察学生解决包含分母的方程的能力,题目要求找出满足方程3/(2x-1)=1的x值,需通过消除分母的方式转化为整式方程进行解答。 4. 三视图的辨认:该题目测试学生对于几何体三视图(主视图、左视图、俯视图)的认识,需要识别出具有两个相同视图而另一个不同的几何体。 5. 立体几何与表面积的计算:题目要求学生计算由直角三角形旋转形成的圆锥的表面积,要求学生对圆锥的底面积和侧面积公式有所了解并加以运用。 6. 统计学的基础概念:题目涉及众数、平均数、极差和中位数的定义,要求学生根据提供的数据信息选择恰当的统计量。 7. 方程的整数解求解:考察学生在实际问题中进行数学建模的能力,通过建立方程来计算在特定条件下帐篷的搭建方案数量。 8. 三角学的实际应用:题目通过在直角三角形中运用三角函数来求解特定线段的长度。 利用正弦定理求解AD的长度是解答该问题的关键。 9. 几何变换的应用:题目要求学生运用三角板的旋转来求解特定点的...
Python基于改进粒子群IPSO与LSTM的短期电力负荷预测研究内容概要:本文围绕“Python基于改进粒子群IPSO与LSTM的短期电力负荷预测研究”展开,提出了一种结合改进粒子群优化算法(IPSO)与长短期记忆网络(LSTM)的混合预测模型。通过IPSO算法优化LSTM网络的关键参数(如学习率、隐层节点数等),有效提升了模型在短期电力负荷预测中的精度与收敛速度。文中详细阐述了IPSO算法的改进策略(如引入自适应惯性权重、变异机制等),增强了全局搜索能力与避免早熟收敛,并利用实际电力负荷数据进行实验验证,结果表明该IPSO-LSTM模型相较于传统LSTM、PSO-LSTM等方法在预测准确性(如MAE、RMSE指标)方面表现更优。研究为电力系统调度、能源管理提供了高精度的负荷预测技术支持。; 适合人群:具备一定Python编程基础、熟悉基本机器学习算法的高校研究生、科研人员及电力系统相关领域的技术人员,尤其适合从事负荷预测、智能优化算法应用研究的专业人士。; 使用场景及目标:①应用于短期电力负荷预测,提升电网调度的精确性与稳定性;②为优化算法(如粒子群算法)与深度学习模型(如LSTM)的融合应用提供实践案例;③可用于学术研究、毕业论文复现或电力企业智能化改造的技术参考。; 阅读建议:建议读者结合文中提到的IPSO与LSTM原理进行理论学习,重点关注参数优化机制的设计思路,并动手复现实验部分,通过对比不同模型的预测结果加深理解。同时可拓展尝试将该方法应用于其他时序预测场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值