Pandas的数据转换函数

Pandas的数据转换函数:map, apply, applymap

参数描述
map只用于Series,实现每个值->值的映射
apply用于Series实现每个值的处理,用于DataFrame实现某个轴的Series的处理
applymap只能用于DataFrame, 用于处理该DataFrame的每个元素

1. map用于Series值的转换

  • 将股票代码英文转换成中文名字
  • Series.map(dict) or Series.map(function)均可
import pandas as pd
file_path = r'C:\TELCEL_MEXICO_BOT\A\互联网公司股票.xlsx'
stocks = pd.read_excel(file_path)

print(stocks)
           日期    公司       收盘      开盘       高       低    交易量   涨跌幅
0  2019-10-03  BIDU   104.32  102.35  104.73  101.15   2.24  0.02
1  2019-10-02  BIDU   102.62  100.85  103.24   99.50   2.69  0.01
2  2019-10-01  BIDU   102.00  102.80  103.26  101.00   1.78 -0.01
3  2019-10-03  BABA  1169.48  166.65  170.18  165.00  10.39  0.02
4  2019-10-02  BABA   165.77  162.82  166.88  161.90  11.60  0.00
5  2019-10-01  BABA   165.15  168.01  168.23  163.64  14.19 -0.01
6  2019-10-03    IQ    16.06   15.71   16.38   15.32  10.08  0.02
7  2019-10-02    IQ    15.72   15.85   15.87   15.12   8.10 -0.01
8  2019-10-01    IQ    15.92   16.14   16.22   15.50  11.65 -0.01
9  2019-10-03    JD   128.80   28.11   28.97   27.82   8.77 -0.03
10 2019-10-02    JD   128.06   28.00   28.22   27.53   9.53  0.00
11 2019-10-01    JD    28.19   28.22   28.57   27.97  10.64  0.00

print(stocks['公司'].unique())
['BIDU' 'BABA' 'IQ' 'JD']

## 公司股票代码到中文的映射,注意这是小写
dict_company_names = {'bidu':'百度',
                            'baba':'阿里巴巴',
                            'iq':'爱奇艺',
                            'jd':'京东'}
## 方法1: Series.map(dict)
stocks['公司中文'] = stocks['公司'].str.lower().map(dict_company_names) 
print(stocks)
           日期    公司       收盘      开盘       高       低    交易量   涨跌幅  公司中文
0  2019-10-03  BIDU   104.32  102.35  104.73  101.15   2.24  0.02    百度
1  2019-10-02  BIDU   102.62  100.85  103.24   99.50   2.69  0.01    百度
2  2019-10-01  BIDU   102.00  102.80  103.26  101.00   1.78 -0.01    百度
3  2019-10-03  BABA  1169.48  166.65  170.18  165.00  10.39  0.02  阿里巴巴
4  2019-10-02  BABA   165.77  162.82  166.88  161.90  11.60  0.00  阿里巴巴
5  2019-10-01  BABA   165.15  168.01  168.23  163.64  14.19 -0.01  阿里巴巴
6  2019-10-03    IQ    16.06   15.71   16.38   15.32  10.08  0.02   爱奇艺
7  2019-10-02    IQ    15.72   15.85   15.87   15.12   8.10 -0.01   爱奇艺
8  2019-10-01    IQ    15.92   16.14   16.22   15.50  11.65 -0.01   爱奇艺
9  2019-10-03    JD   128.80   28.11   28.97   27.82   8.77 -0.03    京东
10 2019-10-02    JD   128.06   28.00   28.22   27.53   9.53  0.00    京东
11 2019-10-01    JD    28.19   28.22   28.57   27.97  10.64  0.00    京东

## 方法2:Series.map(function), function的参数是Series的每个元素的值
print(stocks)
           日期    公司       收盘      开盘       高       低    交易量   涨跌幅
0  2019-10-03  BIDU   104.32  102.35  104.73  101.15   2.24  0.02
1  2019-10-02  BIDU   102.62  100.85  103.24   99.50   2.69  0.01
2  2019-10-01  BIDU   102.00  102.80  103.26  101.00   1.78 -0.01
3  2019-10-03  BABA  1169.48  166.65  170.18  165.00  10.39  0.02
4  2019-10-02  BABA   165.77  162.82  166.88  161.90  11.60  0.00
5  2019-10-01  BABA   165.15  168.01  168.23  163.64  14.19 -0.01
6  2019-10-03    IQ    16.06   15.71   16.38   15.32  10.08  0.02
7  2019-10-02    IQ    15.72   15.85   15.87   15.12   8.10 -0.01
8  2019-10-01    IQ    15.92   16.14   16.22   15.50  11.65 -0.01
9  2019-10-03    JD   128.80   28.11   28.97   27.82   8.77 -0.03
10 2019-10-02    JD   128.06   28.00   28.22   27.53   9.53  0.00
11 2019-10-01    JD    28.19   28.22   28.57   27.97  10.64  0.00

dict_company_names = {'bidu':'百度',
                            'baba':'阿里巴巴',
                            'iq':'爱奇艺',
                            'jd':'京东'}
stocks['公司中文2'] = stocks['公司'].map(lambda x:dict_company_names[x.lower()])
print(stocks)
           日期    公司       收盘      开盘       高       低    交易量   涨跌幅 公司中文2
0  2019-10-03  BIDU   104.32  102.35  104.73  101.15   2.24  0.02    百度
1  2019-10-02  BIDU   102.62  100.85  103.24   99.50   2.69  0.01    百度
2  2019-10-01  BIDU   102.00  102.80  103.26  101.00   1.78 -0.01    百度
3  2019-10-03  BABA  1169.48  166.65  170.18  165.00  10.39  0.02  阿里巴巴
4  2019-10-02  BABA   165.77  162.82  166.88  161.90  11.60  0.00  阿里巴巴
5  2019-10-01  BABA   165.15  168.01  168.23  163.64  14.19 -0.01  阿里巴巴
6  2019-10-03    IQ    16.06   15.71   16.38   15.32  10.08  0.02   爱奇艺
7  2019-10-02    IQ    15.72   15.85   15.87   15.12   8.10 -0.01   爱奇艺
8  2019-10-01    IQ    15.92   16.14   16.22   15.50  11.65 -0.01   爱奇艺
9  2019-10-03    JD   128.80   28.11   28.97   27.82   8.77 -0.03    京东
10 2019-10-02    JD   128.06   28.00   28.22   27.53   9.53  0.00    京东
11 2019-10-01    JD    28.19   28.22   28.57   27.97  10.64  0.00    京东





2. apply用于Series和DataFrame的转换

  • Series.apply(function), 函数的参数是每个值
  • DataFrame.apply(function),函数的参数是Series
import pandas as pd
import numpy as np
file_path = r'C:\TELCEL_MEXICO_BOT\A\互联网公司股票.xlsx'
stocks = pd.read_excel(file_path)
print(stocks)
           日期    公司       收盘      开盘       高       低    交易量   涨跌幅
0  2019-10-03  BIDU   104.32  102.35  104.73  101.15   2.24  0.02
1  2019-10-02  BIDU   102.62  100.85  103.24   99.50   2.69  0.01
2  2019-10-01  BIDU   102.00  102.80  103.26  101.00   1.78 -0.01
3  2019-10-03  BABA  1169.48  166.65  170.18  165.00  10.39  0.02
4  2019-10-02  BABA   165.77  162.82  166.88  161.90  11.60  0.00
5  2019-10-01  BABA   165.15  168.01  168.23  163.64  14.19 -0.01
6  2019-10-03    IQ    16.06   15.71   16.38   15.32  10.08  0.02
7  2019-10-02    IQ    15.72   15.85   15.87   15.12   8.10 -0.01
8  2019-10-01    IQ    15.92   16.14   16.22   15.50  11.65 -0.01
9  2019-10-03    JD   128.80   28.11   28.97   27.82   8.77 -0.03
10 2019-10-02    JD   128.06   28.00   28.22   27.53   9.53  0.00
11 2019-10-01    JD    28.19   28.22   28.57   27.97  10.64  0.00

dict_company_names = {'bidu':'百度',
                            'baba':'阿里巴巴',
                            'iq':'爱奇艺',
                            'jd':'京东'}

## Series.apply(function)

stocks['公司中文3'] = stocks['公司'].apply(lambda x:dict_company_names[x.lower()] )
print(stocks)
           日期    公司       收盘      开盘       高       低    交易量   涨跌幅 公司中文3
0  2019-10-03  BIDU   104.32  102.35  104.73  101.15   2.24  0.02    百度
1  2019-10-02  BIDU   102.62  100.85  103.24   99.50   2.69  0.01    百度
2  2019-10-01  BIDU   102.00  102.80  103.26  101.00   1.78 -0.01    百度
3  2019-10-03  BABA  1169.48  166.65  170.18  165.00  10.39  0.02  阿里巴巴
4  2019-10-02  BABA   165.77  162.82  166.88  161.90  11.60  0.00  阿里巴巴
5  2019-10-01  BABA   165.15  168.01  168.23  163.64  14.19 -0.01  阿里巴巴
6  2019-10-03    IQ    16.06   15.71   16.38   15.32  10.08  0.02   爱奇艺
7  2019-10-02    IQ    15.72   15.85   15.87   15.12   8.10 -0.01   爱奇艺
8  2019-10-01    IQ    15.92   16.14   16.22   15.50  11.65 -0.01   爱奇艺
9  2019-10-03    JD   128.80   28.11   28.97   27.82   8.77 -0.03    京东
10 2019-10-02    JD   128.06   28.00   28.22   27.53   9.53  0.00    京东
11 2019-10-01    JD    28.19   28.22   28.57   27.97  10.64  0.00    京东

## DataFrame.apply(function)

stocks['公司中文4'] = stocks.apply(lambda x:dict_company_names[x['公司'].lower()], axis=1)
print(stocks)
           日期    公司       收盘      开盘       高       低    交易量   涨跌幅 公司中文4
0  2019-10-03  BIDU   104.32  102.35  104.73  101.15   2.24  0.02    百度
1  2019-10-02  BIDU   102.62  100.85  103.24   99.50   2.69  0.01    百度
2  2019-10-01  BIDU   102.00  102.80  103.26  101.00   1.78 -0.01    百度
3  2019-10-03  BABA  1169.48  166.65  170.18  165.00  10.39  0.02  阿里巴巴
4  2019-10-02  BABA   165.77  162.82  166.88  161.90  11.60  0.00  阿里巴巴
5  2019-10-01  BABA   165.15  168.01  168.23  163.64  14.19 -0.01  阿里巴巴
6  2019-10-03    IQ    16.06   15.71   16.38   15.32  10.08  0.02   爱奇艺
7  2019-10-02    IQ    15.72   15.85   15.87   15.12   8.10 -0.01   爱奇艺
8  2019-10-01    IQ    15.92   16.14   16.22   15.50  11.65 -0.01   爱奇艺
9  2019-10-03    JD   128.80   28.11   28.97   27.82   8.77 -0.03    京东
10 2019-10-02    JD   128.06   28.00   28.22   27.53   9.53  0.00    京东
11 2019-10-01    JD    28.19   28.22   28.57   27.97  10.64  0.00    京东

## 注意在这个代码中
1. apply 是在stocks这个DataFrame上调用
2. lambda x 的 x是一个Series,因为指定了axis=1,所以Series的key是列名,可以用x['公司']获取

3. applymap用于DataFrame所有值的转换

import pandas as pd

file_path = r'C:\TELCEL_MEXICO_BOT\A\互联网公司股票.xlsx'
stocks = pd.read_excel(file_path)
print(stocks)
           日期    公司       收盘      开盘       高       低    交易量   涨跌幅
0  2019-10-03  BIDU   104.32  102.35  104.73  101.15   2.24  0.02
1  2019-10-02  BIDU   102.62  100.85  103.24   99.50   2.69  0.01
2  2019-10-01  BIDU   102.00  102.80  103.26  101.00   1.78 -0.01
3  2019-10-03  BABA  1169.48  166.65  170.18  165.00  10.39  0.02
4  2019-10-02  BABA   165.77  162.82  166.88  161.90  11.60  0.00
5  2019-10-01  BABA   165.15  168.01  168.23  163.64  14.19 -0.01
6  2019-10-03    IQ    16.06   15.71   16.38   15.32  10.08  0.02
7  2019-10-02    IQ    15.72   15.85   15.87   15.12   8.10 -0.01
8  2019-10-01    IQ    15.92   16.14   16.22   15.50  11.65 -0.01
9  2019-10-03    JD   128.80   28.11   28.97   27.82   8.77 -0.03
10 2019-10-02    JD   128.06   28.00   28.22   27.53   9.53  0.00
11 2019-10-01    JD    28.19   28.22   28.57   27.97  10.64  0.00

sub_df = stocks[['收盘', '开盘','高', '低', '交易量']]
print(sub_df)
   收盘      开盘       高       低    交易量
0    104.32  102.35  104.73  101.15   2.24
1    102.62  100.85  103.24   99.50   2.69
2    102.00  102.80  103.26  101.00   1.78
3   1169.48  166.65  170.18  165.00  10.39
4    165.77  162.82  166.88  161.90  11.60
5    165.15  168.01  168.23  163.64  14.19
6     16.06   15.71   16.38   15.32  10.08
7     15.72   15.85   15.87   15.12   8.10
8     15.92   16.14   16.22   15.50  11.65
9    128.80   28.11   28.97   27.82   8.77
10   128.06   28.00   28.22   27.53   9.53
11    28.19   28.22   28.57   27.97  10.64

## 将这些数据取整数,应用于所有元素
print(sub_df.applymap(lambda x:int(x)))
   收盘   开盘    高    低  交易量
0    104  102  104  101    2
1    102  100  103   99    2
2    102  102  103  101    1
3   1169  166  170  165   10
4    165  162  166  161   11
5    165  168  168  163   14
6     16   15   16   15   10
7     15   15   15   15    8
8     15   16   16   15   11
9    128   28   28   27    8
10   128   28   28   27    9
11    28   28   28   27   10

## 直接修改原df的这几列

stocks.loc[:,['收盘', '开盘','高', '低', '交易量']] = sub_df.applymap(lambda x:int(x))
print(stocks)

 日期    公司    收盘   开盘    高    低  交易量   涨跌幅
0  2019-10-03  BIDU   104  102  104  101    2  0.02
1  2019-10-02  BIDU   102  100  103   99    2  0.01
2  2019-10-01  BIDU   102  102  103  101    1 -0.01
3  2019-10-03  BABA  1169  166  170  165   10  0.02
4  2019-10-02  BABA   165  162  166  161   11  0.00
5  2019-10-01  BABA   165  168  168  163   14 -0.01
6  2019-10-03    IQ    16   15   16   15   10  0.02
7  2019-10-02    IQ    15   15   15   15    8 -0.01
8  2019-10-01    IQ    15   16   16   15   11 -0.01
9  2019-10-03    JD   128   28   28   27    8 -0.03
10 2019-10-02    JD   128   28   28   27    9  0.00
11 2019-10-01    JD    28   28   28   27   10  0.00

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值