如何用WebGPU流畅渲染千万级2D物体:基于光追管线

本文介绍了如何使用WebGPU和光追管线优化内存,实现从百万级到千万级2D物体的流畅渲染。通过拆分加速结构和Instance Buffer,优化CPU内存占用,成功在RTX2060s显卡上达到2千万个圆环的渲染能力,FPS保持在45左右。文章详细阐述了每一步优化过程和未来改进方向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

🚀 优质资源分享 🚀

学习路线指引(点击解锁) 知识定位 人群定位
🧡 Python实战微信订餐小程序 🧡 进阶级 本课程是python flask+微信小程序的完美结合,从项目搭建到腾讯云部署上线,打造一个全栈订餐系统。
💛Python量化交易实战💛 入门级 手把手带你打造一个易扩展、更安全、效率更高的量化交易系统

大家好~我们已经实现了百万级2D物体的流畅渲染,不过是基于计算管线实现的。本文在它的基础上,改为基于光追管线实现,主要进行了CPU和GPU端内存的优化,成功地将渲染的2D物体数量由4百万提高到了2千万

相关文章如下:
如何用WebGPU流畅渲染百万级2D物体?

本文不需要实现构建和遍历BVH,而是直接使用光追管线提供的加速结构
本文的重点工作在于对CPU内存和GPU内存的优化,突破内存限制(如突破加速结构最大大小限制),使其支持千万级物体的数据

本文使用WebGPU Node项目,作者的介绍在这里。它在底层封装了Vulkan SDK,在上层提供了WebGPU API,实现了在Nodejs环境中使用WebGPU API和光追管线来实现硬件加速的光线追踪(需要使用nvdia的RTX显卡)!
我在2020年就已经基于该项目实现了3D场景渲染,相关介绍如下:
WebGPU+光线追踪Ray Tracing 开发三个月总结

目录* 需求

需求

跟百万级的Demo的需求是一样的,除了提高渲染的2D物体数量到千万级,目的是为了探索基于硬件的光追管线的实现能带来的优化极限

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

[虚幻私塾】

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值