1.6
答:目前对于损失函数的推导和修正很模糊,大多数文献的损失函数看不明白。例如某现场地震数据集的修正损失函数。
2.6
1.答: 2 A = { ∅ , { 3 } , { 5 } , { 3 , 5 } } 2^{\mathbf{A}}=\{\emptyset,\{3\},\{5\},\{3,5\}\} 2A={∅,{3},{5},{3,5}}
2.答: 2 ∅ = { ∅ } 2^\emptyset=\{\emptyset\} 2∅={∅}
3.答:
A
=
{
x
∈
N
∣
4
<
x
<
10
}
\mathbf{A}=\{x \in \mathbf{N} | 4 < x < 10\}
A={x∈N∣4<x<10}
A
=
{
5
,
6
,
7
,
8
,
9
}
=
[
5
,
6
,
.
.
,
9
]
\mathbf{A}=\{5,6,7,8,9\}=[5,6,..,9]
A={5,6,7,8,9}=[5,6,..,9]
4.
a
\textrm{a}
a,
…
\dots
…,
Ω
\mathbf{\Omega}
Ω,
A
\mathbf{A}
A,
A
\bm{A}
A,
A
\boldsymbol{A}
A,
X
=
{
x
i
}
i
=
1
n
=
{
x
1
,
x
2
,
…
,
x
n
}
\mathbf{X} =\{x_i\}_{i=1}^n=\{x_1, x_2, \dots, x_n\}
X={xi}i=1n={x1,x2,…,xn},
X
\mathbb{X}
X,
X
\mathcal{X}
X,
Q
\mathbf{Q}
Q,
∅
\emptyset
∅,
ϕ
\phi
ϕ,
x
∈
X
x \in \mathbf{X}
x∈X,
A
⊆
B
\mathbf{A} \subseteq \mathbf{B}
A⊆B,
∣
X
∣
\lvert \mathbf{X} \rvert
∣X∣,
X
∪
Y
\mathbf{X} \cup \mathbf{Y}
X∪Y,
X
∩
Y
\mathbf{X} \cap \mathbf{Y}
X∩Y,
⋃
i
=
1
n
X
i
\bigcup_{i = 1}^n \mathbf{X}_i
⋃i=1nXi,
∑
i
=
1
n
i
=
1
+
2
+
⋯
+
n
=
n
(
n
+
1
)
2
\sum_{i = 1}^n i = 1 + 2 + \dots + n = \frac{n (n + 1)}{2}
∑i=1ni=1+2+⋯+n=2n(n+1),
⋂
i
=
1
n
X
i
\bigcap_{i = 1}^n \mathbf{X}_i
⋂i=1nXi,
X
∖
Y
\mathbf{X} \setminus \mathbf{Y}
X∖Y,
X
‾
=
U
∖
X
\overline{\mathbf{X}} = \mathbf{U} \setminus \mathbf{X}
X=U∖X,
X
‾
\underline{\mathbf{X}}
X,
2
A
=
{
B
∣
B
⊆
A
}
2^{\mathbf{A}} = \{\mathbf{B} \vert \mathbf{B} \subseteq \mathbf{A}\}
2A={B∣B⊆A},
∣
2
A
∣
=
2
∣
A
∣
=
2
3
=
8
\vert 2^{\mathbf{A}} \vert = 2^{\vert \mathbf{A} \vert} = 2^3 = 8
∣2A∣=2∣A∣=23=8,
A
×
B
=
{
(
a
,
b
)
∣
a
∈
A
,
b
∈
B
}
\mathbf{A} \times \mathbf{B} = \{(a, b) \vert a \in \mathbf{A}, b \in \mathbf{B}\}
A×B={(a,b)∣a∈A,b∈B},
≠
\ne
=