python,生成先验框anchor

本文介绍了一个利用K-means聚类算法生成自定义先验框的方法,通过计算IoU来评估其效果,并以VOC数据集为例进行应用。核心函数包括cas_iou和avg_iou,用于计算框间交并比。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import numpy as np
import xml.etree.ElementTree as ET
import glob
import random


def cas_iou(box, cluster):
    a = cluster[:, 0]
    x = np.minimum(cluster[:, 0], box[0])
    y = np.minimum(cluster[:, 1], box[1])

    intersection = x * y
    area1 = box[0] * box[1]

    area2 = cluster[:, 0] * cluster[:, 1]
    iou = intersection / (area1 + area2 - intersection)

    return iou


def avg_iou(box, cluster):
    return np.mean([np.max(cas_iou(box[i], cluster)) for i in range(box.shape[0])])


def kmeans(box, k):
    # 取出一共有多少框
    row = box.shape[0]

    # 每个框各个点的位置
    distance = np.empty((row, k))

    # 最后的聚类位置
    last_clu = np.zeros((row,))

    np.random.seed()

    # 随机选5个当聚类中心
    cluster = box[np.random.choice(row, k, replace=False)]
    # cluster = random.sample(row, k)
    while True:
        # 计算每一行距离五个点的iou情况。
        for i in range(row):
            distance[i] = 1 - cas_iou(box[i], cluster)

        # 取出最小点
        near = np.argmin(distance, axis=1)

        if (last_clu == near).all():
            break

        # 求每一个类的中位点
        for j in range(k):
            cluster[j] = np.median(
                box[near == j], axis=0)

        last_clu = near

    return cluster


def load_data(path):
    data = []
    # 对于每一个xml都寻找box
    for xml_file in glob.glob('{}/*xml'.format(path)):
        tree = ET.parse(xml_file)
        height = int(tree.findtext('./size/height'))
        width = int(tree.findtext('./size/width'))
        # 对于每一个目标都获得它的宽高
        for obj in tree.iter('object'):
            xmin = int(float(obj.findtext('bndbox/xmin'))) / width
            ymin = int(float(obj.findtext('bndbox/ymin'))) / height
            xmax = int(float(obj.findtext('bndbox/xmax'))) / width
            ymax = int(float(obj.findtext('bndbox/ymax'))) / height

            xmin = np.float64(xmin)
            ymin = np.float64(ymin)
            xmax = np.float64(xmax)
            ymax = np.float64(ymax)
            # 得到宽高
            data.append([xmax - xmin, ymax - ymin])
    return np.array(data)


if __name__ == '__main__':
    anchors_num = 5
    # 载入数据集,可以使用VOC的xml
    path = r'C:\Users\haohao\Desktop\侯文豪\11\all\annotations'

    # 载入所有的xml
    # 存储格式为转化为比例后的width,height
    data = load_data(path)

    # 使用k聚类算法来设计先验框。
    out = kmeans(data, anchors_num)
    out = out[np.argsort(out[:, 0])]
    print('acc:{:.2f}%'.format(avg_iou(data, out) * 100))
    print(out * 13)

Vivado2023是一款集成开发环境软件,用于设计和验证FPGA(现场可编程门阵列)和可编程逻辑器件。对于使用Vivado2023的用户来说,license是必不可少的。 Vivado2023的license是一种许可证,用于授权用户合法使用该软件。许可证分为多种类型,包括评估许可证、开发许可证和节点许可证等。每种许可证都有不同的使用条件和功能。 评估许可证是免费提供的,让用户可以在一段时间内试用Vivado2023的全部功能。用户可以使用这个许可证来了解软件的性能和特点,对于初学者和小规模项目来说是一个很好的选择。但是,使用评估许可证的用户在使用期限过后需要购买正式的许可证才能继续使用软件。 开发许可证是付费的,可以永久使用Vivado2023的全部功能。这种许可证适用于需要长期使用Vivado2023进行开发的用户,通常是专业的FPGA设计师或工程师。购买开发许可证可以享受Vivado2023的技术支持和更新服务,确保软件始终保持最新的版本和功能。 节点许可证是用于多设备或分布式设计的许可证,可以在多个计算机上安装Vivado2023,并共享使用。节点许可证适用于大规模项目或需要多个处理节点进行设计的用户,可以提高工作效率和资源利用率。 总之,Vivado2023 license是用户在使用Vivado2023时必须考虑的问题。用户可以根据自己的需求选择合适的许可证类型,以便获取最佳的软件使用体验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值