一、项目介绍
ipadapter_plus github地址
IPAdapter 是非常强大的图像到图像调节模型参考图像的主题或风格可以很容易地转移到其他图像中。可以把它想象成一个单图像lora。
二、项目部署
下载模型的权重
需要下载的文件
①sdxl的模型权重
stable-diffusion-xl-base-1.0
将此权重文件下载到ComfyUI/models/checkpoint文件夹里面
②视觉编码器的权重
CLIP-ViT-H-14-laion2B-s32B-b79K.safetensors
将此文件权重下载到,ComfyUI/models/clip_vision文件夹里
③ipadapter的权重
/ComfyUI/models/ipadapter
ip-adapter-plus_sdxl_vit-h.safetensors
我们需要下载配对的视觉编码器和ipadapter的权重
部署项目遇到的问题
①需要修改模型权重的加载
将comfyui中,这个ipadapter_plus节点中的utils.py文件夹中,加载视觉编码器和ipadapter的路径改为自己的下载的权重所在的绝对路径
②加载lora权重错误
需要修改unet 的lora权重的名称,和commfyui 的一致
用diffusers下的这个脚本将lora权重转化为comfyui可以使用的lora权重
onvert_diffusers_sdxl_lora_to_webui
# Script for converting a Hugging Face Diffusers trained SDXL LoRAs to Kohya format
# This means that you can input your diffusers-trained LoRAs and
# Get the output to work with WebUIs such as AUTOMATIC1111, ComfyUI, SD.Next and others.
# To get started you can find some cool `diffusers` trained LoRAs such as this cute Corgy
# https://huggingface.co/ignasbud/corgy_dog_LoRA/, download its `pytorch_lora_weights.safetensors` file
# and run the script:
# python convert_diffusers_sdxl_lora_to_webui.py --input_lora pytorch_lora_weights.safetensors --output_lora corgy.safetensors
# now you can use corgy.safetensors in your WebUI of choice!
# To train your own, here are some diffusers training scripts and utils that you can use and then convert:
# LoRA Ease - no code SDXL Dreambooth LoRA trainer: https://huggingface.co/spaces/multimodalart/lora-ease
# Dreambooth Advanced Training Script - state of the art techniques such as pivotal tuning and prodigy optimizer:
# - Script: https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py
# - Colab (only on Pro): https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/SDXL_Dreambooth_LoRA_advanced_example.ipynb
# Canonical diffusers training scripts:
# - Script: https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth_lora_sdxl.py
# - Colab (runs on free tier): https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/SDXL_DreamBooth_LoRA_.ipynb
import argparse
import os
from safetensors.torch import load_file, save_file
from diffusers.utils import convert_all_state_dict_to_peft, convert_state_dict_to_kohya
def convert_and_save(input_lora, output_lora=None):
if output_lora is None:
base_name = os.path.splitext(input_lora)[0]
output_lora = f"{base_name}_webui.safetensors"
diffusers_state_dict = load_file(input_lora)
peft_state_dict = convert_all_state_dict_to_peft(diffusers_state_dict)
kohya_state_dict = convert_state_dict_to_kohya(peft_state_dict)
save_file(kohya_state_dict, output_lora)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Convert LoRA model to PEFT and then to Kohya format.")
parser.add_argument(
"--input_lora",
type=str,
required=True,
help="Path to the input LoRA model file in the diffusers format.",
)
parser.add_argument(
"--output_lora",
type=str,
required=False,
help="Path for the converted LoRA (safetensors format for AUTOMATIC1111, ComfyUI, etc.). Optional, defaults to input name with a _webui suffix.",
)
args = parser.parse_args()
convert_and_save(args.input_lora, args.output_lora)
三、模型的生成效果
文本+风格参考图像生成
风格参考图像+内容参考图像+文本生成
可以看到可以进行风格的迁移,但是生成的图像修改了原来的内容,所以还需要调整参数