上文介绍了 lambda 表达式基础使用,从 stream 流到如何进行流处理,针对 list(列表)、array(数组)、map 集合的操作进行说明,本文更深层次介绍 lambda 表达式一些使用方式。
1、流处理的终结操作
1.1、forEach
对流中的元素进行遍历操作,我们通过传入的参数去指定对遍历到的元素进行什么具体操作。
例子:输出所有作家的名字
// 输出所有作家的名字
List<Author> authors = getAuthors();
authors.stream().map(author -> author.getName()).distinct()
.forEach(name-> System.out.println(name));
1.2、 count
可以用来获取当前流中元素的个数。
例子:打印这些作家的所出书籍的数目,注意删除重复元素。
// 打印这些作家的所出书籍的数目,注意删除重复元素。
List<Author> authors = getAuthors();
long count = authors.stream().flatMap(author -> author.getBooks().stream())
.distinct().count();
System.out.println(count);
1.3、 max & min
可以用来或者流中的最值。
例子:分别获取这些作家的所出书籍的最高分和最低分并打印。
// 分别获取这些作家的所出书籍的最高分和最低分并打印。
//Stream<Author> -> Stream<Book> -> Stream<Integer> -> 求值
List<Author> authors = getAuthors();
Optional<Integer> max = authors.stream().flatMap(author -> author.getBooks().stream())
.map(book -> book.getScore())
.max((score1, score2) -> score1 - score2);
Optional<Integer> min = authors.stream().flatMap(author -> author.getBooks().stream())
.map(book -> book.getScore())
.min((score1, score2) -> score1 - score2);
System.out.println(max.get());
System.out.println(min.get());
1.4、 collect
把当前流转换成一个集合。
例子:获取一个存放所有作者名字的 List 集合。
// 获取一个存放所有作者名字的List集合。
List<Author> authors = getAuthors();
List<String> nameList = authors.stream()
.map(author -> author.getName())
.collect(Collectors.toList());
System.out.println(nameList);
获取一个所有书名的Set集合。
// 获取一个所有书名的Set集合。
List<Author> authors = getAuthors();
Set<Book> books = authors.stream()
.flatMap(author -> author.getBooks().stream())
.collect(Collectors.toSet());
System.out.println(books);
获取一个Map集合,map的key为作者名,value为List<Book>
// 获取一个Map集合,map的key为作者名,value为List<Book>
List<Author> authors = getAuthors();
Map<String, List<Book>> map = authors.stream()
.distinct()
.collect(Collectors.toMap(author -> author.getName(), author -> author.getBooks()));
System.out.println(map);
1.5、 查找与匹配
1.5.1、anyMatch
可以用来判断是否有任意符合匹配条件的元素,结果为boolean类型。
例子:判断是否有年龄在29以上的作家。
// 判断是否有年龄在29以上的作家
List<Author> authors = getAuthors();
boolean flag = authors.stream()
.anyMatch(author -> author.getAge() > 29);
System.out.println(flag);
1.5.2、 allMatch
可以用来判断是否都符合匹配条件,结果为 boolean 类型。如果都符合结果为 true,否则结果为 false。
例子:判断是否所有的作家都是成年人。
// 判断是否所有的作家都是成年人
List<Author> authors = getAuthors();
boolean flag = authors.stream()
.allMatch(author -> author.getAge() >= 18);
System.out.println(flag);
1.5.3、noneMatch
可以判断流中的元素是否都不符合匹配条件。如果都不符合结果为true,否则结果为false例子:
判断:作家是否都没有超过100岁的。
// 判断作家是否都没有超过100岁的。
List<Author> authors = getAuthors();
boolean b = authors.stream()
.noneMatch(author -> author.getAge() > 100);
System.out.println(b);
1.5.4、findAny
获取流中的任意一个元素。该方法没有办法保证获取的一定是流中的第一个元素。
例子:获取任意一个年龄大于18的作家,如果存在就输出他的名字。
// 获取任意一个年龄大于18的作家,如果存在就输出他的名字
List<Author> authors = getAuthors();
Optional<Author> optionalAuthor = authors.stream()
.filter(author -> author.getAge()>18)
.findAny();
optionalAuthor.ifPresent(author -> System.out.println(author.getName()));
1.5.4、findFirst
获取流中的第一个元素。
例子:获取一个年龄最小的作家,并输出他的姓名。
// 获取一个年龄最小的作家,并输出他的姓名。
List<Author> authors = getAuthors();
Optional<Author> first = authors.stream()
.sorted((o1, o2) -> o1.getAge() - o2.getAge())
.findFirst();
first.ifPresent(author -> System.out.println(author.getName()));
1.6、reduce归并
对流中的数据按照你指定的计算方式计算出一个结果。reduce的作用是把stream中的元素给组合起来,我们可以传入一个初始值,它会按照我们的计算方式依次拿流中的元素和初始化值进行计算,计算结果再和后面的元素计算。
reduce两个参数的重载形式内部的计算方式如下:
T result = identity;
for (T element : this stream)
result = accumulator.apply(result, element)
return result;
例子:使用reduce求所有作者年龄的和。
// 使用reduce求所有作者年龄的和
List<Author> authors = getAuthors();
Integer sum = authors.stream()
.distinct()
.map(author -> author.getAge())
.reduce(0, (result, element) -> result + element);
System.out.println(sum);
使用reduce求所有作者中年龄的最大值。
// 使用reduce求所有作者中年龄的最大值
List<Author> authors = getAuthors();
Integer max = authors.stream().map(author -> author.getAge())
.reduce(Integer.MIN_VALUE, (result, element) -> result < element ? element : result);
System.out.println(max);
使用reduce求所有作者中年龄的最小值。
// 使用reduce求所有作者中年龄的最小值
List<Author> authors = getAuthors();
Integer min = authors.stream().map(author -> author.getAge())
.reduce(Integer.MAX_VALUE, (result, element) -> result > element ? element : result);
System.out.println(min);
reduce一个参数的重载形式内部的计算:
boolean foundAny = false;
T result = null;
for (T element : this stream) {
if (!foundAny) {
foundAny = true;
result = element;
}
else
result = accumulator.apply(result, element);
}
return foundAny ? Optional.of(result) : Optional.empty();
如果用一个参数的重载方法去求最小值代码如下:
// 使用reduce求所有作者中年龄的最小值
List<Author> authors = getAuthors();
Optional<Integer> minOptional = authors.stream()
.map(author -> author.getAge())
.reduce((result, element) -> result > element ? element : result);
minOptional.ifPresent(age-> System.out.println(age));
2、总结
本文介绍 lambda 表达式进阶使用,需要注意以下事项:
-
惰性求值:如果没有终结操作,没有中间操作是不会得到执行的;
-
流是一次性的:一旦一个流对象经过一个终结操作后。这个流就不能再被使用;
-
不会影响原数据:我们在流中可以多数据做很多处理。但是正常情况下是不会影响原来集合中的元素的。这往往也是我们期望的。
本人是一个从小白自学计算机技术,对运维、后端、各种中间件技术、大数据等有一定的学习心得,想获取自学总结资料(pdf版本)或者希望共同学习,关注微信公众号:it自学社团。后台回复相应技术名称/技术点即可获得。(本人学习宗旨:学会了就要免费分享)