搜索推荐炼丹笔记:CVR预估中的延迟反馈问题

CVR预估中的延迟反馈问题

v2-071e132c7353c2be34deb925be1bf617_b.jpg
一元@炼丹笔记

问题描述

在很多推荐搜索的建模中,我们经常会使用D+1天的数据作为label,从1~D天的数据中的进行特征抽取等工作,和我们时间序列问题建模类似,但和很多其他的时间序列问题建模不一样的地方在于,我们的label不一定可靠,比如在传统的时间序列回归中,D+1天的销量是多少就是多少,我们没有太多的犹豫,因为不大会有其他的情况。但是在电商的问题中,就存在下面这种情况:

D+1天未购买可能并不一定是真正意义上的未购买,而可能是加入购物车或者意愿清单了, 只是没有在当天下单, 而是过了一天在D+2天的时候下了单, 而这样的标签如果我们直接默认其为负样本就会有较大的问题,因为它并不是真正意义上的负样本,只是反馈延迟了。

这在搜索推荐系统中,我们称之为延迟反馈的问题。

v2-6d43e5bf9464d4e105c4e52dc3046571_b.jpg

问题严峻性

看到这么个描述,我们似乎有了一个直观的理解,但是可能并不会过于重视,我们直观感受是

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值