本文参考代码随想录
给定一个有相同值的二叉搜索树(BST),找出 BST 中的所有众数(出现频率最高的元素)。
假定 BST 有如下定义:
- 结点左子树中所含结点的值小于等于当前结点的值
- 结点右子树中所含结点的值大于等于当前结点的值
- 左子树和右子树都是二叉搜索树
递归法1
中序遍历二叉搜索树,得到有序数组,然后遍历数组得到频率最高的元素
递归法2
创建pre指针和cur指针,在中序遍历过程中比较pre和cur的值,如果一致则记录出现频率count;同时记录当前最大频率max_count,当count=max_count时将当前值加入结果集,当count>max_count时,清空结果集。
class Solution {
private:
int maxCount = 0;
int count = 0;
TreeNode* pre = nullptr;
vector<int> result;
void searchBST(TreeNode* cur) {
if(cur == nullptr) return;
searchBST(cur->left);
if(pre == nullptr) {
count = 1;//第一个节点
}else if(pre->val == cur->val) {
count++;
} else {
count = 1;
}
pre = cur;
if(count == maxCount) {
result.push_back(cur->val);
}
if(count > maxCount) {
maxCount = count;
result.clear();
result.push_back(cur->val);
}
searchBST(cur->right);
return ;
}
public:
vector<int> findMode(TreeNode* root) {
count = 0;
maxCount = 0;
pre = nullptr;
result.clear();
searchBST(root);
return result;
}
};
迭代法
class Solution {
public:
vector<int> findMode(TreeNode* root) {
stack<TreeNode*> st;
TreeNode* cur = root;
TreeNode* pre = nullptr;
int maxCount = 0;
int count = 0;
vector<int> result;
while(cur != nullptr || !st.empty()) {
if(cur != nullptr) {
st.push(cur);
cur = cur->left;
}else {
cur = st.top();
st.pop();
if(pre == nullptr) {
count = 1;
} else if(pre->val == cur->val) {
count++;
} else {
count = 1;
}
if(count == maxCount) {
result.push_back(cur->val);
}
if(count > maxCount) {
maxCount = count;
result.clear();
result.push_back(cur->val);
}
pre = cur;
cur = cur->right;
}
}
return result;
}
};