并查集、最小生成树

并查集

ll f[maxn],num[maxn],dis[maxn];
//num[i]所在连通块的数量,dis[i]为i的深度

ll fd(ll x)
{
    if(f[x]==x) return x;
    ll k=f[x];
    f[x]=fd(f[x]);
    dis[x]+=dis[k];
    num[x]=num[f[x]];
    return f[x];
}

void fd(ll x,ll y)
{
    ll fx=fd(x),fy=fd(y);
    if(fx==fy) return;
    f[fy]=fx;
    dis[fy]=dis[fx]+num[fx];
    num[fx]+=num[fy];
    num[fy]=num[fx];
}

int main()
{
    // DEBUG;
    for(ll i=1;i<=1e5;i++)
    {
        f[i]=i;
        num[i]=1;
    }
}

求集合元素数量最大值

ll fd(ll x)//查找祖先
{
    if(f[x]==x) return x;
    else return f[x]=fd(f[x]);
}

void hb(ll x,ll y)//合并
{
    ll fx=fd(x),fy=fd(y);
    if(fx==fy)return;
    num[fx]+=num[fy];
    f[fy]=fx;
    ans=max(ans,num[fx]);
}

int main()
{
    for (ll i = 0; i < maxn; i++)
    {
        f[i] = i;
    }
    for (ll i = 0; i < maxn; i++)
        num[i] = 1;//初始化
}

可撤销并查集

struct DSU
{
    ll fa[MAXN];
    ll sz[MAXN];
    vector<pair<ll &, ll> > his_sz;
    vector<pair<ll &, ll> > his_fa;
    void init(ll n)
    {
        for (ll i = 1; i <= n; i++)
            fa[i] = i, sz[i] = 1;
    }
    ll find(ll x)
    {
        while (x != fa[x])
            x = fa[x];
        return x;
    }
    bool same(ll u, ll v)
    {
        return find(u) == find(v);
    }
    void merge(ll u, ll v)
    {
        ll x = find(u);
        ll y = find(v);
        if (x == y)
            return;
        if (sz[x] < sz[y])
            std::swap(x, y);
        his_sz.push_back({sz[x], sz[x]});
        sz[x] = sz[x] + sz[y];
        his_fa.push_back({fa[y], fa[y]});
        fa[y] = x;
    }

    ll histroy()
    {
        return his_fa.size();
    }

    void roll(ll h)
    {
        while (his_fa.size() > h)
        {
            his_fa.back().first = his_fa.back().second;
            his_fa.pop_back();
            his_sz.back().first = his_sz.back().second;
            his_sz.pop_back();
        }
    }

} dsu;

最小生成树–Kruskal算法


ll fd(ll x)
{
    if(f[x]==x) return x;
    else return f[x]=fd(f[x]);
}

void hb(ll x,ll y)
{
    ll fx=fd(x),fy=fd(y);
    if(fx==fy) return;
    f[fy]=fx;
}

struct Edge
{
    ll u, v, len;
    bool operator<(Edge other) const
    {
        return len < other.len;
    }
} edges[maxn * maxn];

ll Kruskal()
{
    sort(edges+1, edges + tot+1);
    ll ans = 0, cnt = 0;
    for (ll i = 1; i <= tot; i++)
    {
        ll fx = fd(edges[i].u), fy = fd(edges[i].v);
        if (fx == fy)
            continue;
        else
        {
            ans += edges[i].len;
            cnt++;
        }
        hb(fx, fy);
        if (cnt == n - 1)
            break;
    }
    if (cnt < n - 1)
        return -1;
    else
        return ans;
}
int main()
{
    for (ll i = 0; i < maxn; i++)
    {
        f[i] = i;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值