问题提出
无符号整型unsigned int存储数据的位数有限,0~4294967295(32位),不过也才四十多亿。
如果两个整数相加的结果超过了这个最大值,会发生溢出,导致结果出错。
另,两个整数的位数非常多,已经无法用unsigned int进行存储,该如何实现加法呢?
高精度加法
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<ctime>
#include<vector>
using namespace std;
#define N 100005
#define pi 3.14159
typedef long long ll;
string s1, s2;
//因为位数太多,利用字符串保存两个输入的数,再将每位转化成数字放入vector数组
vector<int> a, b, c;//a为一个加数,b为另一个加数,c为结果
int main()
{
cin >> s1 >> s2;
//为便于进位处理,将个位放前面,逆序存放
for (int i = s1.size() - 1; i >= 0; i--)
{
a.push_back((char)s1[i] - '0');
}
for (int i = s2.size() - 1; i >= 0; i--)
{
b.push_back((char)s2[i] - '0');
}
int i = 0, sum = 0;//用sum存储当前两位相加的结果
if (a.size() < b.size())//a的位数小于b的位数
{
while (i < a.size())
{
sum += a[i] + b[i];//两位相加,且加上进位
c.push_back(sum % 10);//取个位数字
sum /= 10;//产生进位,不够10则为0,代表没有进位
i++;
}
while (i < b.size())//a与b相同位数的部分已经相加完毕,对b剩下的部分进行处理
{
sum += b[i];//当前位加上进位
c.push_back(sum % 10);//取个位数字
sum /= 10;//产生进位,不够10则为0,代表没有进位
i++;
}
}
else //a的位数大于等于b的位数
{
while (i < b.size())
{
sum += a[i] + b[i];//两位相加,且加上进位
c.push_back(sum % 10);//取个位数字
sum /= 10;//产生进位,不够10则为0,代表没有进位
i++;
}
while (i < a.size())//a与b相同位数的部分已经相加完毕,对a剩下的部分进行处理
{
sum += a[i];//当前位加上进位
c.push_back(sum % 10);//取个位数字
sum /= 10;//产生进位,不够10则为0,代表没有进位
i++;
}
}
if (sum > 0)//两者所有位数都相加完毕,如果sum不为0,代表最高位仍有进位
c.push_back(sum);
for (i = c.size() - 1; i >= 0; i--)
{
cout << c[i];//逆序输出
}
return 0;
}
可以看出程序中有大量重复的部分,将该部分写成一个函数能大大减少代码量
高精度减法
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<ctime>
#include<vector>
using namespace std;
#define N 100005
#define pi 3.14159
typedef long long ll;
string s1, s2;
//因为位数太多,利用字符串保存两个输入的数,再将每位转化成数字放入vector数组
vector<int> a, b;//a为被减数,b为减数
vector<int> sub(vector<int> a, vector<int> b)//a>b
{
vector<int> c;//c为最终结果
int i = 0, sum = 0;//用sum存储当前两位相减的结果,i为第几位
while (i < b.size())
{
sum = a[i] - b[i];
if (sum < 0)
{
sum += 10;
a[i + 1] -= 1;
}
c.push_back(sum % 10);//取个位数字
i++;
}
while (i < a.size())//a与b相同位数的部分已经相减完毕,对a剩下的部分进行处理
{
sum = a[i];//当前位加上进位
if (sum < 0)
{
sum += 10;
a[i + 1] -= 1;
}
c.push_back(sum % 10);//取个位数字
i++;
}
return c;
}
int main()
{
vector<int> c;//c为最终结果
cin >> s1 >> s2;
//为便于进位处理,将个位放前面,逆序存放
for (int i = s1.size() - 1; i >= 0; i--)
{
a.push_back((char)s1[i] - '0');
}
for (int i = s2.size() - 1; i >= 0; i--)
{
b.push_back((char)s2[i] - '0');
}
if (a.size() < b.size())//a的位数小于b的位数,即a比b小
{
cout << "-";//结果为负,先把负号输出
c = sub(b, a);
}
else if (a.size() > b.size())//a的位数大于b的位数,即a比b大
{
c = sub(a, b);
}
else //a与b位数相等
{
int flag = 0;//标记,为0时a和b一样大,为1时a比b大,为2时b比a大
for (int i = a.size() - 1; i >= 0; i--)
{
if (a[i] > b[i])
{
flag = 1;
break;
}
else if (a[i] < b[i])
{
flag = 2;
break;
}
}
if (flag == 0)//a和b相等
{
cout << 0;
}
else if (flag == 1)//a大于b
{
c = sub(a, b);
}
else if (flag == 2)//a小于b
{
cout << "-";//结果为负,先把负号输出
c = sub(b, a);
}
}
bool flag = true;//标记,找到首位不为0的数后为假,代表该位和后面的位都要输出
for (int i = c.size() - 1; i >= 0; i--)
{
if (flag && c[i] == 0) continue;
else
{
flag = false;
cout << c[i];//逆序输出
}
}
return 0;
}
这次定义了一个sub函数,减少了一部分代码量,主函数部分主要是判断a和b的大小关系