1.12反向传播误差到更多层

隐藏层误差
在每层两个节点的情况下,即网络是 2 ∗ 2 ∗ 2 2 * 2*2 222

隐藏层第一个节点的误差计算,由输出层误差按权重分配
e h 1 = e o 1 ⋅ ( w 1 , 1 w 1 , 1 + w 2 , 1 ) + e o 2 ⋅ ( w 1 , 2 w 1 , 2 + w 2 , 2 ) e_{h1}=e_{o1}\cdot (\frac {w_{1,1}}{w_{1,1}+w_{2,1}})+e_{o2}\cdot (\frac {w_{1,2}}{w_{1,2}+w_{2,2}}) eh1=eo1(w1,1+w2,1w1,1)+eo2(w1,2+w2,2w1,2)
相应的:
e h 2 = e o 1 ⋅ ( w 2 , 1 w 1 , 1 + w 2 , 1 ) + e o 2 ⋅ ( w 2 , 2 w 2 , 1 + w 2 , 2 ) e_{h2}=e_{o1}\cdot (\frac {w_{2,1}}{w_{1,1}+w_{2,1}})+e_{o2}\cdot (\frac {w_{2,2}}{w_{2,1}+w_{2,2}}) eh2=eo1(w1,1+w2,1w2,1)+eo2(w2,1+w2,2w2,2)

因矩阵相乘的规则是
[ a b c d ] ⋅ [ e f ] = [ a ⋅ e + b ⋅ f c ⋅ e + d ⋅ f ] \left[\begin{array}{clr} a&b\\ c&d\\ \end{array}\right] \cdot \left[\begin{array}{clr} e\\ f\\ \end{array}\right]= \left[\begin{array}{clr} a\cdot e+b\cdot f\\ c\cdot e + d\cdot f\\ \end{array}\right] [acbd][ef]=[ae+bfce+df]

所以反推得到关于第一个节点的隐藏层矩阵的点乘式
和第二个节点的隐藏层矩阵的点乘式
e h 1 = [ w 1 , 1 w 1 , 1 + w 2 , 1 w 1 , 2 w 2 , 1 + w 2 , 2 ] ⋅ [ e o 1 e o 2 ] e_{h1}= \left[\begin{array}{clr} \frac {w_{1,1}}{w_{1,1}+w_{2,1}} & \frac {w_{1,2}}{w_{2,1}+w_{2,2}}\\ \end{array}\right] \cdot \left[\begin{array}{clr} e_{o1} \\ e_{o2} \\ \end{array}\right] eh1=[w1,1+w2,1w1,1w2,1+w2,2w1,2][eo1eo2]

e h 2 = [ w 2 , 1 w 1 , 1 + w 2 , 1 w 2 , 2 w 2 , 1 + w 2 , 2 ] ⋅ [ e o 1 e o 2 ] e_{h2}= \left[\begin{array}{clr} \frac {w_{2,1}}{w_{1,1}+w_{2,1}} & \frac {w_{2,2}}{w_{2,1}+w_{2,2}}\\ \end{array}\right] \cdot \left[\begin{array}{clr} e_{o1} \\ e_{o2} \\ \end{array}\right] eh2=[w1,1+w2,1w2,1w2,1+w2,2w2,2][eo1eo2]

综上,存在误差隐藏层矩阵点乘式是

e h i d d e n = [ w 1 , 1 w 1 , 1 + w 2 , 1 w 1 , 2 w 2 , 1 + w 2 , 2 w 2 , 1 w 1 , 1 + w 2 , 1 w 2 , 2 w 2 , 1 + w 2 , 2 ] ⋅ [ e o 1 e o 2 ] e_{hidden}= \left[\begin{array}{clr} \frac {w_{1,1}}{w_{1,1}+w_{2,1}} & \frac {w_{1,2}}{w_{2,1}+w_{2,2}}\\ \\ \frac {w_{2,1}}{w_{1,1}+w_{2,1}} & \frac {w_{2,2}}{w_{2,1}+w_{2,2}}\\ \end{array}\right] \cdot \left[\begin{array}{clr} e_{o1} \\ e_{o2} \\ \end{array}\right] ehidden=w1,1+w2,1w1,1w1,1+w2,1w2,1w2,1+w2,2w1,2w2,1+w2,2w2,2[eo1eo2]

这些分数难以处理,所以可以丢掉分母,弊端是失去后馈误差的大小

e h i d d e n = [ w 1 , 1 w 1 , 2 w 2 , 1 w 2 , 2 ] ⋅ [ e o 1 e o 2 ] e_{hidden}= \left[\begin{array}{clr} {w_{1,1}} & {w_{1,2}}\\ \\ {w_{2,1}} & {w_{2,2}}\\ \end{array}\right] \cdot \left[\begin{array}{clr} e_{o1} \\ e_{o2} \\ \end{array}\right] ehidden=w1,1w2,1w1,2w2,2[eo1eo2]
这样,第一个矩阵就变成了原来隐藏层权重矩阵的转置矩阵 w T w^{T} wT

于是,反向传播误差为:
e h i d d e n = w T ⋅ e o u t p u t e_{hidden}=w^{T} \cdot e_{output} ehidden=wTeoutput

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值