开发目的:提高百万级数据插入效率。
采取方案:利用ThreadPoolTaskExecutor多线程批量插入。
1. application-dev.properties添加线程池配置信息
# 异步线程配置
# 配置核心线程数
async.executor.thread.core_pool_size = 30
# 配置最大线程数
async.executor.thread.max_pool_size = 30
# 配置队列大小
async.executor.thread.queue_capacity = 99988
# 配置线程池中的线程的名称前缀
async.executor.thread.name.prefix = async-importDB-
2. spring容器注入线程池bean对象
@Configuration
@EnableAsync
@Slf4j
public class ExecutorConfig {
// 获取当前机器的核数
public static final int cpuNum = Runtime.getRuntime().availableProcessors();
@Value("${async.executor.thread.core_pool_size}")
private int corePoolSize;
@Value("${async.executor.thread.max_pool_size}")
private int maxPoolSize;
@Value("${async.executor.thread.queue_capacity}")
private int queueCapacity;
@Value("${async.executor.thread.name.prefix}")
private String namePrefix;
@Bean(name = "asyncServiceExecutor")
public Executor asyncServiceExecutor() {
log.warn("start asyncServiceExecutor");
//在这里修改
ThreadPoolTaskExecutor executor = new VisiableThreadPoolTaskExecutor();
//配置核心线程数
executor.setCorePoolSize(cpuNum * 2);
//配置最大线程数
executor.setMaxPoolSize(cpuNum * 4);
//配置队列大小
executor.setQueueCapacity(queueCapacity);
//配置线程池中的线程的名称前缀
executor.setThreadNamePrefix(namePrefix);
// rejection-policy:当pool已经达到max size的时候,如何处理新任务
// CALLER_RUNS:不在新线程中执行任务,而是有调用者所在的线程来执行
executor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy());
//执行初始化
executor.initialize();
return executor;
}
}
3. 创建异步线程 业务类
import java.util.List;
import java.util.concurrent.CountDownLatch;
public interface AsyncService {
public void executeAsync(ZhuowangSendData sysData, CountDownLatch countDownLatch);
}
4. 实现了
import org.springframework.stereotype.Service;
import java.util.List;
import java.util.concurrent.CountDownLatch;
@Service
@Slf4j
public class AsyncServiceImpl implements AsyncService {
@Autowired
private ZhuowangSendDataMapper zhuowangSendDataMapper;
@Override
@Async("asyncServiceExecutor")
public void executeAsync(ZhuowangSendData sysData, CountDownLatch countDownLatch) {
try{
//sysData实体类 步线程要做的事情、插入数据
zhuowangSendDataMapper.insertZhuowangSendDataMapper(sysData);
}finally {
countDownLatch.countDown();// 很关键, 无论上面程序是否异常必须执行countDown,否则await无法释放
}
}
}
5. 调用
public int testMultiThread() {
CountDownLatch countDownLatch = new CountDownLatch(lists.size());
for (object listSub : lists) {
//开始异步调用
asyncService.executeAsync(listSub, countDownLatch );
}
try {
countDownLatch.await(); //保证之前的所有的线程都执行完成,才会走下面的;
// 这样就可以在下面拿到所有线程执行完的集合结果
} catch (Exception e) {
log.error("阻塞异常:"+e.getMessage());
}
return 1;
}