二叉树
特点:
- 每个结点最多有两棵子树,即二叉树不存在度大于 2 的结点
- 二叉树的子树有左右之分,其子树的次序不能颠倒,二叉树是有序树
二叉树的性质
- 若根节点的层数为1,则一棵非空二叉树的第i层上最多有2^(i - 1) (i>0)个结点
- 若只有根节点的二叉树的深度为1,则深度为K的二叉树的最大结点数是2^k - 1 (k>=0)
- 对任何一棵二叉树, 若叶结点个数为 n0, 度为2的非叶结点个数为 n2,则有n0=n2+1
- 具有n个结点的完全二叉树的深度k为log2(n + 1)上取整
二叉树的存储结构:顺序存储和类似于链表的链式存储
二叉树的前序遍历:([根][左][右] )
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public void preorder(TreeNode root,List<Integer> ret) {
if(root == null) {
return;
}
ret.add(root.val);
preorder(root.left,ret);
preorder(root.right,ret);
}
public List<Integer> preorderTraversal(TreeNode root) {
List<Integer> list = new LinkedList<>();
preorder(root,list);
return list;
}
}
中序遍历:([左][根][右])
class Solution {
public void inorder(TreeNode root,List<Integer> list) {
if(root == null) {
return;
}
inorder(root.left,list);
list.add(root.val);
inorder(root.right,list);
}
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> list = new ArrayList<>();
inorder(root,list);
return list;
}
}
后序遍历:([左][右][根])
class Solution {
public List<Integer> postorderTraversal(TreeNode root) {
List<Integer> list = new ArrayList<>();
if(root != null) {
List<Integer> listleft = postorderTraversal(root.left);
list.addAll(listleft);
List<Integer> listright = postorderTraversal(root.right);
list.addAll(listright);
list.add(root.val);
}
return list;
}
}
相同的树:
class Solution {
public boolean isSameTree(TreeNode p, TreeNode q) {
if(p == null && q == null) {
return true;
}
if(p == null && q != null || (p != null && q == null)) {
return false;
}
if(q.val != p.val) {
return false;
}
boolean left = isSameTree(p.left,q.left);
boolean right = isSameTree(p.right,q.right);
return left && right;
}
}
另一个树的子树
class Solution {
public boolean isSameTree(TreeNode p, TreeNode q) { //判断树是否相同
if(p == null && q == null) {
return true;
}
if(p == null && q != null || (p != null && q == null)) {
return false;
}
if(q.val != p.val) {
return false;
}
return isSameTree(p.left,q.left) && isSameTree(p.right,q.right);
}
public boolean dfs(TreeNode s, TreeNode t) {
if (s == null) {
return false;
}
return isSameTree(s, t) || dfs(s.left, t) || dfs(s.right, t);
}
public boolean isSubtree(TreeNode s, TreeNode t) {
return dfs(s,t);
}
}