Day 44 | 动态规划 完全背包、518. 零钱兑换 II 、 377. 组合总和 Ⅳ

本文详细讲解了完全背包问题与0-1背包的区别,特别强调了完全背包中内层循环从weight[i]到V的遍历策略,以及在货币兑换和组合总和问题中的应用,涉及动态规划状态转移方程的编写。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

完全背包

题目
文章讲解
视频讲解

完全背包和0-1背包的区别在于:物品是否可以重复使用

思路:对于完全背包问题,内层循环的遍历方式应该是从weight[i]开始一直遍历到V,而不是从V到weight[i]。这样可以确保每种物品可以被选择多次放入背包,从而求解完全背包问题。

对于完全背包问题,需要对内层循环进行调整,以确保每种物品可以被选择多次放入背包。

import java.util.*;

public class Main {
   
    public static void main(String[] args) {
   
        Scanner sc = new Scanner(System.in);
        int N = sc.nextInt(); // 研究材料种类
        int V = sc.nextInt(); // 行李箱空间

        int[] values = new int[N]; // 物品价值
        int[] weight = new int[N]; // 物品重量

        // 依次输入每种物品的重量和价值
        for (int i = 0; i < N; i++) {
   
            weight[i] = sc.nextInt(); // 物品重量
            values[i] = sc
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

派大蒜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值