酶活性检测机器学习源代码(欠拟合、过拟合)

import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
from sklearn.preprocessing import PolynomialFeatures

data_train = pd.read_csv('T-R-train.csv')  # 数据预先分离
data_test = pd.read_csv('T-R-test.csv')
# print(data_train)

x_train = data_train.loc[:, 'T']
y_train = data_train.loc[:, 'rate']
x_test = data_test.loc[:, 'T']
y_test = data_test.loc[:, 'rate']

x_train = np.array(x_train).reshape(-1,1)

# fig1 = plt.figure()
# plt.scatter(x_train, y_train)
# plt.title('raw data')
# plt.xlabel('temperature')
# plt.ylabel('rate')
# plt.show()

x_train = np.array(x_train).reshape(-1, 1)
x_test = np.array(x_test).reshape(-1, 1)

# 线性回归模型
lr1 = LinearRegression()
lr1.fit(x_train, y_train)
y_train_predict = lr1.predict(x_train)
y_test_predi
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值