机器学习
文章平均质量分 78
梅小白的进阶之路
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
拉格朗日对偶性
拉格朗日对偶性在约束优化问题中,常常利用拉格朗日对偶性将原始问题转换为对偶问题,通过解对偶问题而得到原始问题的解。1.原始问题2.对偶问题3.原始问题和对偶问题的关系原创 2021-07-13 15:34:37 · 398 阅读 · 0 评论 -
朴素贝叶斯法(python实现)
朴素贝叶斯法朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。一、基本方法设输入空间χ∈Rn\chi \in R^nχ∈Rn是n维向量集合,输出空间y={c1,c2,⋯ ,cK}y=\{c_1,c_2,\cdots,c_K\}y={c1,c2,⋯,cK}为类标记集合。X是定义在输入空间χ\chiχ上的随机向量,Y是定义在输出空间yyy上的随机变量。P(X,Y)P(X,Y)P(X,Y)是X和Y的联合概率分布。训练数据集T={(x1,y1),(x2,y2),⋯ ,(xN,yN)}T=\{(原创 2021-05-28 10:35:06 · 2644 阅读 · 1 评论 -
K近邻法和kd树以及python实现
K近邻法一、K近邻算法1.k近邻法\qquad输入:训练数据集T={(x1,y1),(x2,y2),⋯ ,(xN,yN)}\quad\quad T=\{(x_1,y_1),(x_2,y_2),\cdots,(x_N,y_N)\}T={(x1,y1),(x2,y2),⋯,(xN,yN)}其中,xi∈x⊆Rnx_i\in x\subseteq R^nxi∈x⊆Rn为实例的特征向量,yi∈y={c1,c2,⋯ ,ck}y_i\in y=\{c_1,c_2,\cdots,c_k\}yi∈原创 2021-05-23 15:03:01 · 417 阅读 · 0 评论 -
回归树和分类树的实现原理(调包实现和自己编写)
决策树决策树是一种基本的分类与回归方法一、用于分类的决策树\qquad在分类问题中,基于特征对实例进行分类的过程。可以认为是if−thenif-thenif−then规则的集合,也可以认为是定义是在特征空间与类空间上的条件概率分布。1.决策树学习假设给定训练数据集 D={(x1,y1),(x2,y2),⋯ ,(xN,yN)}\qquad\qquad\ D=\{(x_1,y_1),(x_2,y_2),\cdots,(x_N,y_N)\} D={(x1,y1),(x2,y2原创 2021-05-22 15:19:49 · 683 阅读 · 2 评论
分享