python学习---python_sklearn层次聚类学习

该示例展示了在2D嵌入的数字数据集上不同层次聚类链接选项的效果,旨在直观地说明度量行为,而非寻找数字的良好聚类。平均链接策略导致少数数据点的几个聚类,而单链链接则产生一个大型聚类,包含大多数数字,以及一个较小的干净聚类,主要由零数字组成,其余聚类来自噪声点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

An illustration of various linkage option for agglomerative clustering on a 2D embedding of the digits dataset.

The goal of this example is to show intuitively how the metrics behave, and not to find good clusters for the digits. This is why the example works on a 2D embedding.

What this example shows us is the behavior “rich getting richer” of agglomerative clustering that tends to create uneven cluster sizes.

This behavior is pronounced for the average linkage strategy, that ends up with a couple of clusters with few datapoints.

The case of single linkage is even more pathologic with a very large cluster covering most digits, an intermediate size (clean) cluster with most zero digits and all other clusters being drawn from noise points around the fringes.

The other linkage strategies lead to more evenly distributed clusters that are therefore likely to be less sensible to a random resampling of the dataset.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值