Codeforces-242B-Big Segment

本文介绍了一个简单但易混淆的问题:在一系列定义的区间中,找出是否存在一个区间能够完全包含所有其他区间。通过计算最小左端点和最大右端点,遍历区间集合,检查是否有区间两端点分别等于这两个计算值,从而找到覆盖所有区间的超级区间。

Description

A coordinate line has n segments, the i-th segment starts at the position li and ends at the position ri. We will denote such a segment as [li, ri].

You have suggested that one of the defined segments covers all others. In other words, there is such segment in the given set, which contains all other ones. Now you want to test your assumption. Find in the given set the segment which covers all other segments, and print its number. If such a segment doesn’t exist, print -1.

Formally we will assume that segment [a, b] covers segment [c, d], if they meet this condition a ≤ c ≤ d ≤ b.

Input

The first line contains integer n (1 ≤ n ≤ 105) — the number of segments. Next n lines contain the descriptions of the segments. The i-th line contains two space-separated integers li, ri (1 ≤ li ≤ ri ≤ 109) — the borders of the i-th segment.

It is guaranteed that no two segments coincide.

Output

Print a single integer — the number of the segment that covers all other segments in the set. If there’s no solution, print -1.

The segments are numbered starting from 1 in the order in which they appear in the input.

Sample Input 
Input


1 1 
2 2 
3 3

Output

-1

Input


1 5 
2 3 
1 10 
7 10 
7 7 
10 10

Output

3
 

思路

其实这个题很简单,但是当时我就是想复杂了。

算出最小的左端点L和最大的右端点R,遍历一下,看是否有一个区间,他的左端点恰好等于L,右端点恰好等于R

代码

#include<cstdio>
#include<queue>
#include<algorithm>

using namespace std;

const int maxn = 1e5 + 10;
pair<int, int> p[maxn];

int main() {
	int n,l = 1e9 + 1, r = 0,res = -1;
	scanf("%d",&n);
	
	for (int i = 0; i < n; i++) {
		scanf("%d%d",&p[i].first, &p[i].second);
		l = min(p[i].first, l);
		r = max(p[i].second, r);
	}
	
	for (int i = 0; i < n; i++) {
		if (p[i].first == l && p[i].second == r) {
			res = i + 1;
		}
	}
	printf("%d\n",res);
	
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Honyelchak

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值