机器学习(李宏毅)——BERT

一、前言

本文章作为学习2023年《李宏毅机器学习课程》的笔记,感谢台湾大学李宏毅教授的课程,respect!!!
读这篇文章必须先了解self-attention、Transformer,可参阅我其他文章。

二、大纲

  • BERT简介
  • self-supervised learning(自督导式学习)
  • BERT原理
  • BERT应用
  • BERT为啥有效?

三、BERT简介

  • BERT (Bidirectional Encoder Representations from Transformers)

  • BERT 是由 Google AI 于 2018年10月 提出的预训练语言模型,其论文《BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding》在 arXiv 发布,引起了 NLP 领域的巨大关注。

  • BERT 的核心思想是基于 Transformer 结构,并采用 双向(Bidirectional) 预训练机制,极大提升了自然语言理解(NLU)任务的性能。

  • 参数量对比

在这里插入图片描述

模型 参数量
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

龚大龙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值