Parameter 'first' not found. Available parameters are [0, 1, param1, param2]

博客记录了Servlet报错,根源是MyBatis出现BindingException,提示参数'first'未找到,可用参数为[0, 1, param1, param2],还指出了出错的Mapper.java文件,并给出指定参数别名的解决办法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

报错日志

Servlet.service() for servlet [dispatcherServlet] in context with path [] threw exception [Request processing failed; nested exception is org.mybatis.spring.MyBatisSystemException: nested exception is org.apache.ibatis.binding.BindingException: Parameter 'first' not found. Available parameters are [0, 1, param1, param2]] with root cause
org.apache.ibatis.binding.BindingException: Parameter 'first' not found. Available parameters are [0, 1, param1, param2]

出错的Mapper.java

List<WsMenu> twoParam(Integer first, Integer second);

解决办法(指定参数别名):

List<WsMenu> twoParam(@Param("first") Integer first,@Param("second") Integer second);

 

import argparse import logging import math import os import random import time from copy import deepcopy from pathlib import Path from threading import Thread import ckpt import numpy as np import torch.distributed as dist import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torch.optim.lr_scheduler as lr_scheduler import torch.utils.data import yaml from torch.cuda import amp from torch.nn.parallel import DistributedDataParallel as DDP from torch.utils.tensorboard import SummaryWriter from tqdm import tqdm import test # import test.py to get mAP after each epoch from models.experimental import attempt_load from models.yolo import Model from utils.autoanchor import check_anchors from utils.datasets import create_dataloader from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \ fitness, strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, \ check_requirements, print_mutation, set_logging, one_cycle, colorstr from utils.google_utils import attempt_download from utils.loss import ComputeLoss from utils.plots import plot_images, plot_labels, plot_results, plot_evolution from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first, is_parallel from utils.wandb_logging.wandb_utils import WandbLogger, check_wandb_resume import chardet logger = logging.getLogger(__name__) def train(hyp, opt, device, tb_writer=None): logger.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items())) save_dir, epochs, batch_size, total_batch_size, weights, rank = \ Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank # Directories wdir = save_dir / 'weights' wdir.mkdir(parents=True, exist_ok=True) # make dir last = wdir / 'last.pt' best = wdir / 'best.pt' results_file = save_dir / 'results.txt' # Save run settings with open(save_dir / 'hyp.yaml', 'w') as f: yaml.dump(hyp, f, sort_keys=False) with open(save_dir / 'opt.yaml', 'w') as f: yaml.dump(vars(opt), f, sort_keys=False) # Configure plots = not opt.evolve # create plots cuda = device.type != 'cpu' init_seeds(2 + rank) with open(opt.data) as f: data_dict = yaml.load(f, Loader=yaml.SafeLoader) # data dict is_coco = opt.data.endswith('coco.yaml') # Logging- Doing this before checking the dataset. Might update data_dict loggers = {'wandb': None} # loggers dict if rank in [-1, 0]: opt.hyp = hyp # add hyperparameters run_id = torch.load(weights).get('wandb_id') if weights.endswith('.pt') and os.path.isfile(weights) else None wandb_logger = WandbLogger(opt, Path(opt.save_dir).stem, run_id, data_dict) loggers['wandb'] = wandb_logger.wandb data_dict = wandb_logger.data_dict if wandb_logger.wandb: weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp # WandbLogger might update weights, epochs if resuming nc = 1 if opt.single_cls else int(data_dict['nc']) # number of classes names = ['item'] if opt.single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check # Model pretrained = weights.endswith('.pt') if pretrained: with torch_distributed_zero_first(rank): attempt_download(weights) # download if not found locally # ckpt = torch.load(weights, map_location=device) # load checkpoint ckpt = torch.load(weights, map_location=device, weights_only=False) # load checkpoint model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create exclude = ['anchor'] if (opt.cfg or hyp.get('anchors')) and not opt.resume else [] # exclude keys state_dict = ckpt['model'].float().state_dict() # to FP32 state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect model.load_state_dict(state_dict, strict=False) # load logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report else: model = Model(opt.cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create with torch_distributed_zero_first(rank): check_dataset(data_dict) # check train_path = data_dict['train'] test_path = data_dict['val'] # Freeze freeze = [] # parameter names to freeze (full or partial) for k, v in model.named_parameters(): v.requires_grad = True # train all layers if any(x in k for x in freeze): print('freezing %s' % k) v.requires_grad = False # Optimizer nbs = 64 # nominal batch size accumulate = max(round(nbs / total_batch_size), 1) # accumulate loss before optimizing hyp['weight_decay'] *= total_batch_size * accumulate / nbs # scale weight_decay logger.info(f"Scaled weight_decay = {hyp['weight_decay']}") pg0, pg1, pg2 = [], [], [] # optimizer parameter groups for k, v in model.named_modules(): if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): pg2.append(v.bias) # biases if isinstance(v, nn.BatchNorm2d): pg0.append(v.weight) # no decay elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): pg1.append(v.weight) # apply decay if opt.adam: optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum else: optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True) optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay optimizer.add_param_group({'params': pg2}) # add pg2 (biases) logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0))) del pg0, pg1, pg2 # Scheduler https://arxiv.org/pdf/1812.01187.pdf # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR if opt.linear_lr: lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear else: lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf'] scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs) # EMA ema = ModelEMA(model) if rank in [-1, 0] else None # Resume start_epoch, best_fitness = 0, 0.0 if pretrained: # Optimizer if ckpt['optimizer'] is not None: optimizer.load_state_dict(ckpt['optimizer']) best_fitness = ckpt['best_fitness'] # EMA if ema and ckpt.get('ema'): ema.ema.load_state_dict(ckpt['ema'].float().state_dict()) ema.updates = ckpt['updates'] # Results if ckpt.get('training_results') is not None: results_file.write_text(ckpt['training_results']) # write results.txt # Epochs start_epoch = ckpt['epoch'] + 1 if opt.resume: assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs) if epochs < start_epoch: logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' % (weights, ckpt['epoch'], epochs)) epochs += ckpt['epoch'] # finetune additional epochs del ckpt, state_dict # Image sizes gs = max(int(model.stride.max()), 32) # grid size (max stride) nl = model.model[-1].nl # number of detection layers (used for scaling hyp['obj']) imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples # DP mode if cuda and rank == -1 and torch.cuda.device_count() > 1: model = torch.nn.DataParallel(model) # SyncBatchNorm if opt.sync_bn and cuda and rank != -1: model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device) logger.info('Using SyncBatchNorm()') # Trainloader dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt, hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=rank, world_size=opt.world_size, workers=opt.workers, image_weights=opt.image_weights, quad=opt.quad, prefix=colorstr('train: ')) mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class nb = len(dataloader) # number of batches assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1) # Process 0 if rank in [-1, 0]: testloader = create_dataloader(test_path, imgsz_test, batch_size * 2, gs, opt, # testloader hyp=hyp, cache=opt.cache_images and not opt.notest, rect=True, rank=-1, world_size=opt.world_size, workers=opt.workers, pad=0.5, prefix=colorstr('val: '))[0] if not opt.resume: labels = np.concatenate(dataset.labels, 0) c = torch.tensor(labels[:, 0]) # classes # cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency # model._initialize_biases(cf.to(device)) if plots: plot_labels(labels, names, save_dir, loggers) if tb_writer: tb_writer.add_histogram('classes', c, 0) # Anchors if not opt.noautoanchor: check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) model.half().float() # pre-reduce anchor precision # DDP mode if cuda and rank != -1: model = DDP(model, device_ids=[opt.local_rank], output_device=opt.local_rank, # nn.MultiheadAttention incompatibility with DDP https://github.com/pytorch/pytorch/issues/26698 find_unused_parameters=any(isinstance(layer, nn.MultiheadAttention) for layer in model.modules())) # Model parameters hyp['box'] *= 3. / nl # scale to layers hyp['cls'] *= nc / 80. * 3. / nl # scale to classes and layers hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl # scale to image size and layers hyp['label_smoothing'] = opt.label_smoothing model.nc = nc # attach number of classes to model model.hyp = hyp # attach hyperparameters to model model.gr = 1.0 # iou loss ratio (obj_loss = 1.0 or iou) model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights model.names = names # Start training t0 = time.time() nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations) # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training maps = np.zeros(nc) # mAP per class results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls) scheduler.last_epoch = start_epoch - 1 # do not move scaler = amp.GradScaler(enabled=cuda) compute_loss = ComputeLoss(model) # init loss class logger.info(f'Image sizes {imgsz} train, {imgsz_test} test\n' f'Using {dataloader.num_workers} dataloader workers\n' f'Logging results to {save_dir}\n' f'Starting training for {epochs} epochs...') for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------ model.train() # Update image weights (optional) if opt.image_weights: # Generate indices if rank in [-1, 0]: cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx # Broadcast if DDP if rank != -1: indices = (torch.tensor(dataset.indices) if rank == 0 else torch.zeros(dataset.n)).int() dist.broadcast(indices, 0) if rank != 0: dataset.indices = indices.cpu().numpy() # Update mosaic border # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs) # dataset.mosaic_border = [b - imgsz, -b] # height, width borders mloss = torch.zeros(4, device=device) # mean losses if rank != -1: dataloader.sampler.set_epoch(epoch) pbar = enumerate(dataloader) logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'labels', 'img_size')) if rank in [-1, 0]: pbar = tqdm(pbar, total=nb) # progress bar optimizer.zero_grad() for i, (imgs, targets, paths, _) in pbar: # batch ------------------------------------------------------------- ni = i + nb * epoch # number integrated batches (since train start) imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0 # Warmup if ni <= nw: xi = [0, nw] # x interp # model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou) accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round()) for j, x in enumerate(optimizer.param_groups): # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0 x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)]) if 'momentum' in x: x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']]) # Multi-scale if opt.multi_scale: sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size sf = sz / max(imgs.shape[2:]) # scale factor if sf != 1: ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple) imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False) # Forward with amp.autocast(enabled=cuda): pred = model(imgs) # forward loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size if rank != -1: loss *= opt.world_size # gradient averaged between devices in DDP mode if opt.quad: loss *= 4. # Backward scaler.scale(loss).backward() # Optimize if ni % accumulate == 0: scaler.step(optimizer) # optimizer.step scaler.update() optimizer.zero_grad() if ema: ema.update(model) # Print if rank in [-1, 0]: mloss = (mloss * i + loss_items) / (i + 1) # update mean losses mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB) s = ('%10s' * 2 + '%10.4g' * 6) % ( '%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1]) pbar.set_description(s) # Plot if plots and ni < 3: f = save_dir / f'train_batch{ni}.jpg' # filename Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start() # if tb_writer: # tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch) # tb_writer.add_graph(torch.jit.trace(model, imgs, strict=False), []) # add model graph elif plots and ni == 10 and wandb_logger.wandb: wandb_logger.log({"Mosaics": [wandb_logger.wandb.Image(str(x), caption=x.name) for x in save_dir.glob('train*.jpg') if x.exists()]}) # end batch ------------------------------------------------------------------------------------------------ # end epoch ---------------------------------------------------------------------------------------------------- # Scheduler lr = [x['lr'] for x in optimizer.param_groups] # for tensorboard scheduler.step() # DDP process 0 or single-GPU if rank in [-1, 0]: # mAP ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride', 'class_weights']) final_epoch = epoch + 1 == epochs if not opt.notest or final_epoch: # Calculate mAP wandb_logger.current_epoch = epoch + 1 results, maps, times = test.test(data_dict, batch_size=batch_size * 2, imgsz=imgsz_test, model=ema.ema, single_cls=opt.single_cls, dataloader=testloader, save_dir=save_dir, verbose=nc < 50 and final_epoch, plots=plots and final_epoch, wandb_logger=wandb_logger, compute_loss=compute_loss, is_coco=is_coco) # Write with open(results_file, 'a') as f: f.write(s + '%10.4g' * 7 % results + '\n') # append metrics, val_loss if len(opt.name) and opt.bucket: os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name)) # Log tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss 'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', 'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss 'x/lr0', 'x/lr1', 'x/lr2'] # params for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags): if tb_writer: tb_writer.add_scalar(tag, x, epoch) # tensorboard if wandb_logger.wandb: wandb_logger.log({tag: x}) # W&B # Update best mAP fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95] if fi > best_fitness: best_fitness = fi wandb_logger.end_epoch(best_result=best_fitness == fi) # Save model if (not opt.nosave) or (final_epoch and not opt.evolve): # if save ckpt = {'epoch': epoch, 'best_fitness': best_fitness, 'training_results': results_file.read_text(), 'model': deepcopy(model.module if is_parallel(model) else model).half(), 'ema': deepcopy(ema.ema).half(), 'updates': ema.updates, 'optimizer': optimizer.state_dict(), 'wandb_id': wandb_logger.wandb_run.id if wandb_logger.wandb else None} # Save last, best and delete torch.save(ckpt, last) if best_fitness == fi: torch.save(ckpt, best) if wandb_logger.wandb: if ((epoch + 1) % opt.save_period == 0 and not final_epoch) and opt.save_period != -1: wandb_logger.log_model( last.parent, opt, epoch, fi, best_model=best_fitness == fi) del ckpt # end epoch ---------------------------------------------------------------------------------------------------- # end training if rank in [-1, 0]: # Plots if plots: plot_results(save_dir=save_dir) # save as results.png if wandb_logger.wandb: files = ['results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]] wandb_logger.log({"Results": [wandb_logger.wandb.Image(str(save_dir / f), caption=f) for f in files if (save_dir / f).exists()]}) # Test best.pt logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600)) if opt.data.endswith('coco.yaml') and nc == 80: # if COCO for m in (last, best) if best.exists() else (last): # speed, mAP tests results, _, _ = test.test(opt.data, batch_size=batch_size * 2, imgsz=imgsz_test, conf_thres=0.001, iou_thres=0.7, model=attempt_load(m, device).half(), single_cls=opt.single_cls, dataloader=testloader, save_dir=save_dir, save_json=True, plots=False, is_coco=is_coco) # Strip optimizers final = best if best.exists() else last # final model for f in last, best: if f.exists(): strip_optimizer(f) # strip optimizers if opt.bucket: os.system(f'gsutil cp {final} gs://{opt.bucket}/weights') # upload if wandb_logger.wandb and not opt.evolve: # Log the stripped model wandb_logger.wandb.log_artifact(str(final), type='model', name='run_' + wandb_logger.wandb_run.id + '_model', aliases=['last', 'best', 'stripped']) wandb_logger.finish_run() else: dist.destroy_process_group() torch.cuda.empty_cache() return results if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--weights', type=str, default='v5Lite-s.pt', help='initial weights path') parser.add_argument('--cfg', type=str, default='models/v5Lite-s.yaml', help='model.yaml path') parser.add_argument('--data', type=str, default='data/mydata.yaml', help='data.yaml path') parser.add_argument('--hyp', type=str, default='data/hyp.scratch.yaml', help='hyperparameters path') parser.add_argument('--epochs', type=int, default=300) parser.add_argument('--batch-size', type=int, default=3, help='total batch size for all GPUs') parser.add_argument('--img-size', nargs='+', type=int, default=[320, 320], help='[train, test] image sizes') parser.add_argument('--rect', action='store_true', help='rectangular training') parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training') parser.add_argument('--nosave', action='store_true', help='only save final checkpoint') parser.add_argument('--notest', action='store_true', help='only test final epoch') parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check') parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters') parser.add_argument('--bucket', type=str, default='', help='gsutil bucket') parser.add_argument('--cache-images', action='store_true', help='cache images for faster training') parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training') parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%') parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class') parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer') parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode') parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify') parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers') parser.add_argument('--project', default='runs/train', help='save to project/name') parser.add_argument('--entity', default=None, help='W&B entity') parser.add_argument('--name', default='exp', help='save to project/name') parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') parser.add_argument('--quad', action='store_true', help='quad dataloader') parser.add_argument('--linear-lr', action='store_true', help='linear LR') parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon') parser.add_argument('--upload_dataset', action='store_true', help='Upload dataset as W&B artifact table') parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval for W&B') parser.add_argument('--save_period', type=int, default=-1, help='Log model after every "save_period" epoch') parser.add_argument('--artifact_alias', type=str, default="latest", help='version of dataset artifact to be used') opt = parser.parse_args() # Set DDP variables opt.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1 opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1 set_logging(opt.global_rank) if opt.global_rank in [-1, 0]: check_git_status() check_requirements() # Resume wandb_run = check_wandb_resume(opt) if opt.resume and not wandb_run: # resume an interrupted run # 修改后的加载代码 ckpt = torch.load(ckpt, map_location='cpu', weights_only=False) # 添加 weights_only=False assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist' apriori = opt.global_rank, opt.local_rank with open(Path(ckpt).parent.parent / 'opt.yaml') as f: opt = argparse.Namespace(**yaml.load(f, Loader=yaml.SafeLoader)) # replace opt.cfg, opt.weights, opt.resume, opt.batch_size, opt.global_rank, opt.local_rank = '', ckpt, True, opt.total_batch_size, *apriori # reinstate logger.info('Resuming training from %s' % ckpt) else: # opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml') opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified' opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test) opt.name = 'evolve' if opt.evolve else opt.name opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok | opt.evolve) # increment run # DDP mode opt.total_batch_size = opt.batch_size device = select_device(opt.device, batch_size=opt.batch_size) if opt.local_rank != -1: assert torch.cuda.device_count() > opt.local_rank torch.cuda.set_device(opt.local_rank) device = torch.device('cuda', opt.local_rank) dist.init_process_group(backend='nccl', init_method='env://') # distributed backend assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count' opt.batch_size = opt.total_batch_size // opt.world_size # Hyperparameters with open(opt.hyp) as f: hyp = yaml.load(f, Loader=yaml.SafeLoader) # load hyps # Train logger.info(opt) if not opt.evolve: tb_writer = None # init loggers if opt.global_rank in [-1, 0]: prefix = colorstr('tensorboard: ') logger.info(f"{prefix}Start with 'tensorboard --logdir {opt.project}', view at http://localhost:6006/") tb_writer = SummaryWriter(opt.save_dir) # Tensorboard train(hyp, opt, device, tb_writer) # Evolve hyperparameters (optional) else: # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit) meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3) 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf) 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok) 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr 'box': (1, 0.02, 0.2), # box loss gain 'cls': (1, 0.2, 4.0), # cls loss gain 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels) 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight 'iou_t': (0, 0.1, 0.7), # IoU training threshold 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore) 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5) 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction) 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction) 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction) 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg) 'translate': (1, 0.0, 0.9), # image translation (+/- fraction) 'scale': (1, 0.0, 0.9), # image scale (+/- gain) 'shear': (1, 0.0, 10.0), # image shear (+/- deg) 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001 'flipud': (1, 0.0, 1.0), # image flip up-down (probability) 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability) 'mosaic': (1, 0.0, 1.0), # image mixup (probability) 'mixup': (1, 0.0, 1.0)} # image mixup (probability) assert opt.local_rank == -1, 'DDP mode not implemented for --evolve' opt.notest, opt.nosave = True, True # only test/save final epoch # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml' # save best result here if opt.bucket: os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists for _ in range(300): # generations to evolve if Path('evolve.txt').exists(): # if evolve.txt exists: select best hyps and mutate # Select parent(s) parent = 'single' # parent selection method: 'single' or 'weighted' x = np.loadtxt('evolve.txt', ndmin=2) n = min(5, len(x)) # number of previous results to consider x = x[np.argsort(-fitness(x))][:n] # top n mutations w = fitness(x) - fitness(x).min() # weights if parent == 'single' or len(x) == 1: # x = x[random.randint(0, n - 1)] # random selection x = x[random.choices(range(n), weights=w)[0]] # weighted selection elif parent == 'weighted': x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination # Mutate mp, s = 0.8, 0.2 # mutation probability, sigma npr = np.random npr.seed(int(time.time())) g = np.array([x[0] for x in meta.values()]) # gains 0-1 ng = len(meta) v = np.ones(ng) while all(v == 1): # mutate until a change occurs (prevent duplicates) v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0) for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300) hyp[k] = float(x[i + 7] * v[i]) # mutate # Constrain to limits for k, v in meta.items(): hyp[k] = max(hyp[k], v[1]) # lower limit hyp[k] = min(hyp[k], v[2]) # upper limit hyp[k] = round(hyp[k], 5) # significant digits # Train mutation results = train(hyp.copy(), opt, device) # Write mutation results print_mutation(hyp.copy(), results, yaml_file, opt.bucket) # Plot results plot_evolution(yaml_file) print(f'Hyperparameter evolution complete. Best results saved as: {yaml_file}\n' f'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}') 上述文件运行时显示”Traceback (most recent call last): File "D:\YOLOv5-Lite-1.4\YOLOv5-Lite-master\train.py", line 11, in <module> import ckpt File "D:\YOLOv5-Lite-1.4\YOLOv5-Lite-master\.venv\Lib\site-packages\ckpt\__init__.py", line 5, in <module> from .config import get_ckpt_dir, set_ckpt_dir File "D:\YOLOv5-Lite-1.4\YOLOv5-Lite-master\.venv\Lib\site-packages\ckpt\config.py", line 81, in <module> set_ckpt_dir() ~~~~~~~~~~~~^^ File "D:\YOLOv5-Lite-1.4\YOLOv5-Lite-master\.venv\Lib\site-packages\ckpt\config.py", line 53, in set_ckpt_dir ckpt_dir = resolve_ckpt_dir(ckpt_dir) File "D:\YOLOv5-Lite-1.4\YOLOv5-Lite-master\.venv\Lib\site-packages\ckpt\config.py", line 40, in resolve_ckpt_dir raise Exception("Could not find ckpt-directory") Exception: Could not find ckpt-directory“给出完整详细的解决方案,给出修改后的完整的可运行的代码,给出可运行的代码构成,给出具体修改的代码位置行数
05-12
#!/usr/bin/env python # Copyright (c) 2016 The UUV Simulator Authors. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Import the ROS Python library from __future__ import print_function import rospy # Import the NumPy package for numerical computations import numpy as np # Import the dynamic positioning controller base class to inherit methods such as error computation update, # publishing from some important ROS topics (e.g. trajectory, pose and velocity reference) and access to # the vehicle model class, that is necessary to explicitly use the vehicle model from uuv_control_interfaces import DPControllerBase class TutorialDPController(DPControllerBase): # A new controller that is based on the DPControllerBase must at least provide the implementation of # the method update_controller. # The _reset_controller method can also be overridden and it will be called every time there is a service call # <vehicle namespace>/reset_controller. The default implementation sets the reference and error vectors to # zero. # The update_controller method must contain the implementation of the control algorithm and will be called # by every update of the vehicle's odometry message. It is therefore not necessary to explicitly call this update # function in this controller implementation. # For the controller to send the control torques to the vehicle's thruster manager, at the end of the # update_controller function the 6 x 1 control vector (type numpy.ndarray) sent using the function # publish_control_wrench from the super class, which will generate a Wrench ROS message and publish it to the # correspondent thruster manager node. # For this tutorial, a simple PID controller will be implemented. The controller's control torque output is # "tau" therefore computed as: # # tau = Kp * e + Kd * de/dt + Ki int_e # # where e is the pose error vector, in this case defined as e = (x, y, z, roll, pitch, yaw)^T def __init__(self): # Calling the constructor of the super-class DPControllerBase, which has the implementation of the error # computation update and to publish the resulting torque control vector. super(TutorialDPController, self).__init__(self) # The controller should read its parameters from the ROS parameter server for initial setup # One way to do this is to read the parameters from the node's private parameter namespace, which is done by # reading the parameter tag with an "~" at the beginning. If this method is used, the parameters should be # initialized accordingly in the controller startup launch file, such as # # <launch> # <node pkg="example_package" type="example_node.py" name="example_node" output="screen"> # <rosparam> # param_1: 0.0 # param_2: 0.0 # </rosparam> # </node> # </launch> # # For more information, see http://wiki.ros.org/roscpp_tutorials/Tutorials/AccessingPrivateNamesWithNodeHandle # Let's initialize the controller gain matrices Kp, Kd and Ki self._Kp = np.zeros(shape=(6, 6)) self._Kd = np.zeros(shape=(6, 6)) self._Ki = np.zeros(shape=(6, 6)) # Initialize the integrator component self._int = np.zeros(shape=(6,)) # Initialize variable that will store the vehicle pose error self._error_pose = np.zeros(shape=(6,)) # Now the gain matrices need to be set according to the variables stored in the parameter server # For simplicity, the gain matrices are defined as diagonal matrices, so only 6 coefficients are # needed if rospy.get_param('~Kp'): Kp_diag = rospy.get_param('~Kp') if len(Kp_diag) == 6: self._Kp = np.diag(Kp_diag) else: # If the vector provided has the wrong dimension, raise an exception raise rospy.ROSException('For the Kp diagonal matrix, 6 coefficients are needed') # Do the same for the other two matrices if rospy.get_param('~Kd'): diag = rospy.get_param('~Kd') if len(diag) == 6: self._Kd = np.diag(diag) print('Kd=\n', self._Kd) else: # If the vector provided has the wrong dimension, raise an exception raise rospy.ROSException('For the Kd diagonal matrix, 6 coefficients are needed') if rospy.get_param('~Ki'): diag = rospy.get_param('~Ki') if len(diag) == 6: self._Ki = np.diag(diag) print('Ki=\n', self._Ki) else: # If the vector provided has the wrong dimension, raise an exception raise rospy.ROSException('For the Ki diagonal matrix, 6 coefficients are needed') self._is_init = True def _reset_controller(self): # The _reset_controller method from the super class DPControllerBase already sets the error # and reference vectors to zero, but this class has additional attributes that should also # be taken care of. # This implementation will, therefore, first call the super class reset method super(TutorialDPController, self)._reset_controller() # And then proceed to set the internal variables back to zero self._error_pose = np.zeros(shape=(6,)) self._int = np.zeros(shape=(6,)) def update_controller(self): if not self._is_init: return False # The controller algorithm must be implemented here, the super class will connect this method # to the odometry update as a callback function # First test whether or not the odometry topic subscriber has already been initialized if not self.odom_is_init: return # Update the integrator, read the super class vector for the pose error (orientation is represented # with Euler angles in RPY convention) and integrate to the stored pose error from the last # iteration self._int = self._int + 0.5 * (self.error_pose_euler + self._error_pose) * self._dt # Store the current pose error for the next iteration self._error_pose = self.error_pose_euler # Compute the control forces and torques using the current error vectors available tau = np.dot(self._Kp, self.error_pose_euler) + np.dot(self._Kd, self._errors['vel']) + \ np.dot(self._Ki, self._int) # Use the super class method to convert the control force vector into a ROS message # and publish it as an input to the vehicle's thruster manager. The thruster manager module # will then distribute the efforts amongst the thrusters using the thruster allocation matrix self.publish_control_wrench(tau) if __name__ == '__main__': # Since this is an ROS node, this Python script has to be treated as an executable # Remember to convert this Python file into an executable. This can be done with # # cd <path_to_ros_package>/scripts # chmod 777 tutorial_dp_controller.py # # This file has also to be included in this package's CMakeLists.txt # After the line catkin_package() in the CMakeLists.txt, include the following # # catkin_install_python(PROGRAMS scripts/tutorial_dp_controller.py DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION}) print('Tutorial - DP Controller') rospy.init_node('tutorial_dp_controller') try: node = TutorialDPController() rospy.spin() except rospy.ROSInterruptException: print('caught exception') print('exiting')学习这个代码,编写一个lqr控制器
05-14
我该怎么获取报错位置或者图像等的详细信息,因为修改代码后每次都是在1384这个位置报错终止。D:\miniconda3\envs\pix2pix\python.exe D:\keti\CoupledTPS-main\rotation\Codes\train2.py <==================== setting arguments ===================> Namespace(gpu='0', batch_size=4, max_epoch=180, iter_num=4, train_path='../data/DRC-D/training/', train_unlabel_path='../data/DRC-D/training_unlabel/', test_path='../data/DRC-D/testing/') <==================== jump into training function ===================> Checking directory: gt Found directory: gt, images: 5537 Checking directory: input Found directory: input, images: 5537 odict_keys(['gt', 'input']) Found directory: input, images: 7511 Found directory: input_aug, images: 7511 odict_keys(['input', 'input_aug']) Found directory: gt, images: 665 Found directory: input, images: 665 odict_keys(['gt', 'input']) D:\miniconda3\envs\pix2pix\lib\site-packages\torchvision\models\_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead. warnings.warn( D:\miniconda3\envs\pix2pix\lib\site-packages\torchvision\models\_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=ResNet18_Weights.IMAGENET1K_V1`. You can also use `weights=ResNet18_Weights.DEFAULT` to get the most up-to-date weights. warnings.warn(msg) D:\miniconda3\envs\pix2pix\lib\site-packages\torchvision\models\_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=VGG19_Weights.IMAGENET1K_V1`. You can also use `weights=VGG19_Weights.DEFAULT` to get the most up-to-date weights. warnings.warn(msg) training from stratch! ##################start training####################### start epoch 0 0 lr=0.000100 D:\miniconda3\envs\pix2pix\lib\site-packages\torch\functional.py:534: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at C:\actions-runner\_work\pytorch\pytorch\builder\windows\pytorch\aten\src\ATen\native\TensorShape.cpp:3596.) return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 Training: Epoch[001/180] Label Loss: 1.0179 Unlabel Loss: 0.0000 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 Training: Epoch[001/180] Label Loss: 0.9176 Unlabel Loss: 0.0000 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 Training: Epoch[001/180] Label Loss: 0.8636 Unlabel Loss: 0.0000 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 Training: Epoch[001/180] Label Loss: 0.8459 Unlabel Loss: 0.0000 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 Traceback (most recent call last): File "D:\keti\CoupledTPS-main\rotation\Codes\train2.py", line 285, in <module> train(args) File "D:\keti\CoupledTPS-main\rotation\Codes\train2.py", line 237, in train ssim_value = ssim(correction_np, gt_np, data_range=255, multichannel=True) File "D:\miniconda3\envs\pix2pix\lib\site-packages\skimage\metrics\_structural_similarity.py", line 186, in structural_similarity raise ValueError( ValueError: win_size exceeds image extent. Either ensure that your images are at least 7x7; or pass win_size explicitly in the function call, with an odd value less than or equal to the smaller side of your images. If your images are multichannel (with color channels), set channel_axis to the axis number corresponding to the channels. 进程已结束,退出代码1,请根据完整的train2.py代码详细分析错误原因及位置。import argparse import torch from torch.utils.data import DataLoader import numpy as np import os import torch.nn as nn import torch.optim as optim from torch.utils.tensorboard import SummaryWriter import cv2 #from torch_homography_model import build_model from network import build_model, CoupledTPS_RotationNet from datetime import datetime from dataset import TestDataset, UnlabelDataset, LabelDataset, DataProvider import glob from loss import cal_appearance_loss, cal_perception_loss, cal_mutual_loss import torchvision.models as models import skimage from skimage.metrics import peak_signal_noise_ratio as psnr from skimage.metrics import structural_similarity as ssim # path of project last_path = os.path.abspath(os.path.join(os.path.dirname("__file__"), os.path.pardir)) # path to save the summary files SUMMARY_DIR = os.path.join(last_path, 'summary') writer = SummaryWriter(log_dir=SUMMARY_DIR) # path to save the model files MODEL_DIR = os.path.join(last_path, 'model') # create folders if it dose not exist if not os.path.exists(MODEL_DIR): os.makedirs(MODEL_DIR) if not os.path.exists(SUMMARY_DIR): os.makedirs(SUMMARY_DIR) def train(args): os.environ['CUDA_DEVICES_ORDER'] = "PCI_BUS_ID" os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu # 有标签数据集 label_data = LabelDataset(args.train_path) label_loader = DataProvider(label_data, batch_size=args.batch_size, shuffle=True, num_workers=args.batch_size) # 无标签数据集 (training and testing) unlabel_data = UnlabelDataset(args.train_unlabel_path) unlabel_loader = DataProvider(unlabel_data, batch_size=int(args.batch_size/2), shuffle=True, num_workers=int(args.batch_size/2)) # 在前 120 个训练周期中,我们以监督学习的方式训练网络。for the first 120 epochs, we train the network in the supervised way label_step = 1 unlabel_step = 0 batch_nums = int(5537 / args.batch_size / label_step) # 测试数据集 test_data = TestDataset(data_path=args.test_path) test_loader = DataLoader(dataset=test_data, batch_size=1, num_workers=1, shuffle=False, drop_last=True) # 创建主模型和VGG模型(用于感知损失) net = CoupledTPS_RotationNet() vgg_model = models.vgg19(pretrained=True) if torch.cuda.is_available(): net = net.cuda() vgg_model = vgg_model.cuda() # define the optimizer and learning rate optimizer = optim.Adam(net.parameters(), lr=1e-4, betas=(0.9, 0.999), eps=1e-08) # default as 0.0001 scheduler = optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.98) #load the existing models if it exists ckpt_list = glob.glob(MODEL_DIR + "/*.pth") ckpt_list.sort() if len(ckpt_list) != 0: model_path = ckpt_list[-1] checkpoint = torch.load(model_path) net.load_state_dict(checkpoint['model']) optimizer.load_state_dict(checkpoint['optimizer']) start_epoch = checkpoint['epoch'] glob_iter = checkpoint['glob_iter'] scheduler.last_epoch = start_epoch print('load model from {}!'.format(model_path)) else: start_epoch = 0 glob_iter = 0 print('training from stratch!') print("##################start training#######################") print_interval = 300 for epoch in range(start_epoch, args.max_epoch): #input_tensor = 0 print("start epoch {}".format(epoch)) # when the epoch number exceeds 120, we train the network in the semi-supervised manner if epoch >= 120: label_step = 2 unlabel_step = 1 label_loss_sigma_list = [0.] * args.iter_num unlabel_loss_sigma = 0. print(epoch, 'lr={:.6f}'.format(optimizer.state_dict()['param_groups'][0]['lr'])) net.train() # semi-supervised training for batch_idx in range(batch_nums): # training labeled data for i in range(label_step): # load data input_tensor, gt_tensor = label_loader.next() if torch.cuda.is_available(): input_tensor = input_tensor.cuda() gt_tensor = gt_tensor.cuda() # forward, backward, update weights optimizer.zero_grad() batch_out = build_model(net, input_tensor, args.iter_num) correction_list = batch_out['correction'] # cal loss total_loss = 0 # perception_loss_list = [] for k in range(args.iter_num): perception_loss = cal_perception_loss(vgg_model, correction_list[k], gt_tensor) perception_loss = perception_loss * 1e-4 label_loss_sigma_list[k] += perception_loss.item() total_loss = total_loss + perception_loss*(0.9**(args.iter_num-1-k)) total_loss.backward() # clip the gradient torch.nn.utils.clip_grad_norm_(net.parameters(), max_norm=3, norm_type=2) optimizer.step() # training unlabeled data via consistency contraint for i in range(unlabel_step): # load data input_tensor, input_aug_tensor = unlabel_loader.next() if torch.cuda.is_available(): input_tensor = input_tensor.cuda() input_aug_tensor = input_aug_tensor.cuda() # forward, backward, update weights optimizer.zero_grad() batch_out = build_model(net, torch.cat([input_tensor, input_aug_tensor], 0), 1) norm_pre_mesh = batch_out['norm_pre_mesh_list'][0] total_loss = 0 unlabel_loss = cal_mutual_loss(vgg_model, torch.cat([input_tensor, input_aug_tensor], 0), norm_pre_mesh) unlabel_loss_sigma += unlabel_loss.item() total_loss = total_loss + unlabel_loss total_loss.backward() # clip the gradient torch.nn.utils.clip_grad_norm_(net.parameters(), max_norm=3, norm_type=2) optimizer.step() if batch_idx % print_interval == 0 and batch_idx != 0: label_loss_average_list = [0.] * args.iter_num unlabel_loss_average = 0. for k in range(args.iter_num): label_loss_average_list[k] = label_loss_sigma_list[k]/ print_interval/ label_step if unlabel_step == 0: unlabel_loss_average = 0 else: unlabel_loss_average = unlabel_loss_sigma/ print_interval/ unlabel_step label_loss_sigma_list = [0.] * args.iter_num unlabel_loss_sigma = 0. print("Training: Epoch[{:0>3}/{:0>3}] Label Loss: {:.4f} Unlabel Loss: {:.4f}".format(epoch + 1, args.max_epoch, label_loss_average_list[-1], unlabel_loss_average)) # visualization writer.add_scalar('lr', optimizer.state_dict()['param_groups'][0]['lr'], glob_iter) for k in range(args.iter_num): writer.add_scalar('label loss' + str(k), label_loss_average_list[k], glob_iter) writer.add_scalar('unlabel loss', unlabel_loss_average, glob_iter) glob_iter += 1 print(glob_iter) scheduler.step() # save model if ((epoch+1) % 10 == 0 or (epoch+1)==args.max_epoch): filename ='epoch' + str(epoch+1).zfill(3) + '_model.pth' model_save_path = os.path.join(MODEL_DIR, filename) state = {'model': net.state_dict(), 'optimizer': optimizer.state_dict(), 'epoch': epoch+1, "glob_iter": glob_iter} torch.save(state, model_save_path) # testing if (epoch+1)%1 == 0: loss2_list = [0.] * args.iter_num #loss1_list = [] #loss2_list = [] psnr_list = [] ssim_list = [] net.eval() for i, batch_value in enumerate(test_loader): input_tensor = batch_value[0].float() gt_tensor = batch_value[1].float() if torch.cuda.is_available(): input_tensor = input_tensor.cuda() gt_tensor = gt_tensor.cuda() with torch.no_grad(): batch_out = build_model(net, input_tensor, args.iter_num) correction_list = batch_out['correction'] # cal loss #loss1 = cal_perception_loss(vgg_model, correction, gt_tesnor) * 1e-4 for k in range(args.iter_num): loss2 = cal_appearance_loss(correction_list[k], gt_tensor) loss2_list[k] += loss2.item() # choose the second iter's result to calculate PSNR/SSIM correction_tensor = correction_list[2] correction_np = ((correction_tensor[0]+1)*127.5).cpu().detach().numpy().transpose(1,2,0) gt_np = ((gt_tensor[0]+1)*127.5).cpu().detach().numpy().transpose(1,2,0) psnr_value = psnr(correction_np, gt_np, data_range=255) ssim_value = ssim(correction_np, gt_np, data_range=255, multichannel=True) psnr_list.append(psnr_value) ssim_list.append(ssim_value) print(i) print("===================Results Analysis==================") print('average psnr:', np.mean(psnr_list)) print('average ssim:', np.mean(ssim_list)) print("##################end testing#######################") loss2_average_list = [0.] * args.iter_num for k in range(args.iter_num): loss2_average_list[k] = loss2_list[k]/665 #writer.add_scalar('test_ave_loss1_vgg', ave_loss1, epoch+1) writer.add_scalar('test_ave_psnr', np.mean(psnr_list), epoch+1) writer.add_scalar('test_ave_ssim', np.mean(ssim_list), epoch+1) for k in range(args.iter_num): writer.add_scalar('test_ave_loss2_lp' + str(k), loss2_average_list[k], epoch+1) print("Testing: Epoch[{:0>3}/{:0>3}] ave_loss1: {:.4f} ".format(epoch + 1, args.max_epoch, loss2_average_list[0])) if __name__=="__main__": print('<==================== setting arguments ===================>\n') #nl: create the argument parser parser = argparse.ArgumentParser() #nl: add arguments parser.add_argument('--gpu', type=str, default='0') parser.add_argument('--batch_size', type=int, default=4) parser.add_argument('--max_epoch', type=int, default=180) parser.add_argument('--iter_num', type=int, default=4) parser.add_argument('--train_path', type=str, default='../data/DRC-D/training/') parser.add_argument('--train_unlabel_path', type=str, default='../data/DRC-D/training_unlabel/') parser.add_argument('--test_path', type=str, default='../data/DRC-D/testing/') #nl: parse the arguments args = parser.parse_args() print(args) print('<==================== jump into training function ===================>\n') #nl: rain train(args)
最新发布
07-09
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值