题目描述:
Given four lists A, B, C, D of integer values, compute how many tuples (i, j, k, l) there are such that A[i] + B[j] + C[k] + D[l] is zero.
To make problem a bit easier, all A, B, C, D have same length of N where 0 ≤ N ≤ 500. All integers are in the range of -228 to 228 - 1 and the result is guaranteed to be at most 231 - 1.
Example:
Input:
A = [ 1, 2]
B = [-2,-1]
C = [-1, 2]
D = [ 0, 2]
Output:
2
Explanation:
The two tuples are:
1. (0, 0, 0, 1) -> A[0] + B[0] + C[0] + D[1] = 1 + (-2) + (-1) + 2 = 0
2. (1, 1, 0, 0) -> A[1] + B[1] + C[0] + D[0] = 2 + (-1) + (-1) + 0 = 0
题目大意:给出四个大小相同的数组,找出有多少组数字(系数),使每个数组中任取一个元素相加等于0。
思路:将前两个数字的数字相加做一下哈希,得出任意前两个数组的数字和,再遍历后两个数组找有没有匹配的(哈希)。处理相同情况就把哈希的值+1。
c++代码:
class Solution {
public:
int fourSumCount(vector<int>& A, vector<int>& B, vector<int>& C, vector<int>& D) {
map<int, int> hash;
int ans = 0;
for (auto i : A)
{
for (auto j : B)
{
hash[i + j]++;
}
}
for (auto i : C)
{
for (auto j : D)
{
if (hash.count(-(i + j)) != 0)
{
ans += hash[-(i + j)];
}
}
}
return ans;
}
};