最近用到Gabor滤波器,先了解一下基本概念,然后配合python自带的函数解读一下代码的含义。
概念部分参考:https://blog.youkuaiyun.com/forest_world/article/details/50926004
https://blog.youkuaiyun.com/jorg_zhao/article/details/47153115
一、Gabor滤波器
Gabor滤波器,最主要使用优势体现在对物体纹理特征的提取上。
二维Gabor基函数能够很好地描述哺乳动物初级视觉系统中一对简单视觉神经元的感受野特性。随着小波变换和神经生理学的发展,Gabor变换逐渐演变成二维Gabor小波的形式。Gabor滤波器对于图像的亮度和对比度变化以及人脸姿态变化具有较强的健壮性,并且它表达的是对人脸识别最为有用的局部特征,故在计算机视觉及纹理分析中得到广泛的应用。
如果从Fourier变换的角度来看,Gabor变换就是窗函数取高斯窗时的短时Fourier变换。
如果从小波变换的角度来看,Gabor变换就是小波基函数取Gabor基的小波变换。
其中a,b,σ1,σ2,ρ都是常数,我们称(X,Y)服从参数为a,b,σ1,σ2,ρ的∗∗二维正态分布∗∗,常把这个分布记作N(a,b,σ1,σ2,ρ)。