一、SPI简介
SPI协议是由摩托罗拉公司提出的通讯协议(Serial Peripheral Interface),即串行外围设备接口,是一种高速全双工的通信总线。它被广泛地使用在ADC、LCD等设备与MCU间,要求通讯速率较高的场合。
STM32有3个SPI:SPI1、SPI2和SPI3。其中SPI1挂载在APB2总线上,最高通信速率可达42Mbit/s ;SPI2和SPI3挂载在APB1总线上,最高通信速率可达21Mbit/s。三个SPI除了通讯速率上有差异外,其它功能上没有任何差异。
(1)物理层
SCK:时钟信号线,用于通讯数据同步。它由通讯主机产生,决定了通讯的速率,不同的设备支持的最高时钟频率不一样,如STM32的SPI时钟频率最大为fpclk/2,两个设备之间通讯时,通讯速率受限于低速设备。
MOSI:主设备输出/从设备输入引脚。主机的数据从这条信号线输出,从机由这条信号线读入主机发送的数据,即这条线上数据的方向为主机到从机。
MISO:主设备输入/从设备输出引脚。主机从这条信号线读入数据,从机的数据由这条信号线输出到主机,即在这条线上数据的方向为从机到主机。
SS:从设备选择信号线,常称为片选信号线,也称为NSS、CS。每个从设备都有独立的这一条SS信号线,本信号线独占主机的一个引脚,即有多少个从设备,就有多少条片选信号线。SPI协议使用SS信号线来寻址,当主机要选择从设备时,把该从设备的SS信号线设置为低电平,该从设备即被选中,即片选有效,接着主机开始与被选中的从设备进行SPI通讯。所以SPI通讯以SS线置低电平为开始信号,以SS线被拉高作为结束信号。
(2)协议层
SPI协议定义了通讯的起始和停止信号,数据有效性、时钟同步等环节。
1》通讯基本过程
标号1处,NSS信号线由高变低,是SPI通讯的起始信号。NSS是每个从机各自独占的信号线,当从机检在自己的NSS线检测到起始信号后,就知道自己被主机选中了,开始准备与主机通讯。
在图中的标号6处,NSS信号由低变高,是SPI通讯的停止信号,表示本次通讯结束,从机的选中状态被取消。
SPI使用MOSI及MISO信号线来传输数据,使用SCK信号线进行数据同步。MOSI及MISO数据线在SCK的每个时钟周期传输一位数据,且数据输入输出是同时进行的。
触发:数据无效,进行高低电平的变化。
采样:数据有效,数据保持稳定。
2》CPOL/CPHA
时钟极性CPOL是指SPI通讯设备处于空闲状态时,SCK信号线的电平信号(即SPI通讯开始前、 NSS线为高电平时SCK的状态)。CPOL=0时, SCK在空闲状态时为低电平,CPOL=1时,则相反。
时钟相位CPHA是指数据的采样的时刻,当CPHA=0时,MOSI或MISO数据线上的信号将会在SCK时钟线的“奇数边沿”被采样。当CPHA=1时,数据线在SCK的“偶数边沿”采样。
SCK信号线在空闲状态为低电平时,CPOL=0;空闲状态为高电平时,CPOL=1。
CPHA=0,MOSI和MISO数据线的有效信号在SCK的奇数边沿保持不变,数据信号将在SCK奇数边沿时被采样,在非采样时刻,MOSI和MISO的有效信号才发生切换。
CPHA=1,MOSI和MISO数据线的有效信号在SCK的偶数边沿保持不变,数据信号将在SCK偶数边沿时被采样,在非采样时刻,MOSI和MISO的有效信号才发生切换。
3》通讯模式
由CPOL及CPHA的不同状态,SPI分成了四种模式,主机与从机需要工作在相同的模式下才可以正常通讯,实际中采用较多的是“模式0”与“模式3”。
二、功能框图
三、通讯过程
控制NSS信号线,产生起始信号(图中没有画出);
把要发送的数据写入到“数据寄存器DR”中,该数据会被存储到发送缓冲区;
通讯开始,SCK时钟开始运行。MOSI把发送缓冲区中的数据一位一位地传输出去;MISO则把数据一位一位地存储进接收缓冲区中; 当发送完一帧数据的时候,“状态寄存器SR”中的“TXE标志位”会被置1,表示传输完一帧,发送缓冲区已空;类似地,当接收完一帧数据的时候,“RXNE标志位”会被置1,表示传输完一帧,接收缓冲区非空;
等待到“TXE标志位”为1时,若还要继续发送数据,则再次往“数据寄存器DR”写入数据即可;等待到“RXNE标志位”为1时,通过读取“数据寄存器DR”可以获取接收缓冲区中的内容。
假如使能了TXE或RXNE中断,TXE或RXNE置1时会产生SPI中断信号,进入同一个中断服务函数,到SPI中断服务程序后,可通过检查寄存器位来了解是哪一个事件,再分别进行处理。也可以使用DMA方式来收发“数据寄存器DR”中的数据。
只有在发送数据时,才会产生SCK时钟,所以SPI在需要接收数据时,必须先发送一个任意的数据,FLASH会忽略接收的数据,并将指定的数据发送给MCU。
四、原理图