北大oj1013——Counterfeit Dollar

本文介绍了一道经典的算法问题,即如何通过三次称重找出十二枚硬币中唯一一枚重量不同的假币。博主回忆了自己在大学时期遇到此题的经历,并分享了一个C++解决方案。该程序利用错误记录表和称重结果,最终确定假币及其重量。题目挑战了逻辑思维和问题解决能力,是算法学习的良好实践。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Counterfeit Dollar

Time Limit: 1000MS Memory Limit: 10000K

Description

Sally Jones has a dozen Voyageur silver dollars. However, only eleven of the coins are true silver dollars; one coin is counterfeit even though its color and size make it indistinguishable from the real silver dollars. The counterfeit coin has a different weight from the other coins but Sally does not know if it is heavier or lighter than the real coins.
Happily, Sally has a friend who loans her a very accurate balance scale. The friend will permit Sally three weighings to find the counterfeit coin. For instance, if Sally weighs two coins against each other and the scales balance then she knows these two coins are true. Now if Sally weighs
one of the true coins against a third coin and the scales do not balance then Sally knows the third coin is counterfeit and she can tell whether it is light or heavy depending on whether the balance on which it is placed goes up or down, respectively.
By choosing her weighings carefully, Sally is able to ensure that she will find the counterfeit coin with exactly three weighings.

Input

The first line of input is an integer n (n > 0) specifying the number of cases to follow. Each case consists of three lines of input, one for each weighing. Sally has identified each of the coins with the letters A--L. Information on a weighing will be given by two strings of letters and then one of the words up'',down'', or ``even''. The first string of letters will represent the coins on the left balance; the second string, the coins on the right balance. (Sally will always place the same number of coins on the right balance as on the left balance.) The word in the third position will tell whether the right side of the balance goes up, down, or remains even.

Output

For each case, the output will identify the counterfeit coin by its letter and tell whether it is heavy or light. The solution will always be uniquely determined.

Sample Input

1
ABCD EFGH even
ABCI EFJK up
ABIJ EFGH even

Sample Output

K is the counterfeit coin and it is light.

比较简单的一道题,跑了一遍讨论区里给的数据就过了。
让人比较感慨的一件事是,当年大一进acm社区时,学长给的就是这道题,如果有12个硬币,其中有一个是假的,有一个水平秤,不知假币轻重,问我们怎么才能判别哪个是假的。
当时其实想到了给每个硬币编号,然后放上去对比,但是好像用二分法感觉也能往下走,最后时间不够了,最终也没算出来,就没进acm社团,哈哈哈,其实挺后悔的。

#include<iostream>
#include<vector>
using namespace std;

int main()
{
    int n;
    cin >> n;
    for (int i = 0; i < n; i++) {
        vector<int> errorTableUp;
        vector<int> errorTableDown;
        vector<int> rightTable;
        bool isFirstError = true;
        vector<int>::iterator it;

        for (int j = 0; j < 3; j++) {
            int index = 0;
            int curIndex = 0;
            char cin_str[100];
            char cin_Left[13];
            char cin_Right[13];
            char result[10];
            cin >> cin_Left >> cin_Right >> result;

            if (result[0] == 'e') {
                for (int m = 0; cin_Left[m] != NULL; m++) {
                    rightTable.push_back(cin_Left[m]);
                }
                for (int m = 0; cin_Right[m] != NULL; m++) {
                    rightTable.push_back(cin_Right[m]);
                }
            }
            else {
                if (isFirstError) {
                    if (result[0] == 'u') {
                        for (int m = 0; cin_Left[m] != NULL; m++) {
                            errorTableDown.push_back(cin_Left[m]);
                        }
                        for (int m = 0; cin_Right[m] != NULL; m++) {
                            errorTableUp.push_back(cin_Right[m]);
                        }
                    }
                    else if (result[0] == 'd') {
                        for (int m = 0; cin_Left[m] != NULL; m++) {
                            errorTableUp.push_back(cin_Left[m]);
                        }
                        for (int m = 0; cin_Right[m] != NULL; m++) {
                            errorTableDown.push_back(cin_Right[m]);
                        }
                    }

                    isFirstError = false;
                }
                else {
                    vector<int> errorTableDownNew(errorTableDown);
                    errorTableDown.clear();
                    vector<int> errorTableUpNew(errorTableUp);
                    errorTableUp.clear();
                    if (result[0] == 'u') {
                        for (int m = 0; cin_Left[m] != NULL; m++) {
                            for (it = errorTableDownNew.begin(); it != errorTableDownNew.end(); it++) {
                                if (cin_Left[m] == (*it)) {
                                    errorTableDown.push_back((*it));
                                    break;
                                }
                            }
                        }
                        for (int m = 0; cin_Right[m] != NULL; m++) {
                            for (it = errorTableUpNew.begin(); it != errorTableUpNew.end(); it++) {
                                if (cin_Right[m] == (*it)) {
                                    errorTableUp.push_back((*it));
                                    break;
                                }
                            }
                        }
                    }
                    else if (result[0] == 'd') {
                        for (int m = 0; cin_Left[m] != NULL; m++) {
                            for (it = errorTableUpNew.begin(); it != errorTableUpNew.end(); it++) {
                                if (cin_Left[m] == (*it)) {
                                    errorTableUp.push_back((*it));
                                    break;
                                }
                            }
                        }
                        for (int m = 0; cin_Right[m] != NULL; m++) {
                            for (it = errorTableDownNew.begin(); it != errorTableDownNew.end(); it++) {
                                if (cin_Right[m] == (*it)) {
                                    errorTableDown.push_back((*it));
                                    break;
                                }
                            }
                        }
                    }
                }
            }
        }
        char errorChar;
        for (it = errorTableUp.begin(); it != errorTableUp.end(); it++) {
            bool isEnd = true;
            vector<int>::iterator it_right;
            for (it_right = rightTable.begin(); it_right != rightTable.end(); it_right++) {
                if ((*it) == (*it_right)) {
                    isEnd = false;
                    break;
                }
            }
            if (isEnd){
                errorChar = (*it);
                cout << errorChar << " is the counterfeit coin and it is light." << endl;
                break;
            }
        }
        for (it = errorTableDown.begin(); it != errorTableDown.end(); it++) {
            bool isEnd = true;
            vector<int>::iterator it_right;
            for (it_right = rightTable.begin(); it_right != rightTable.end(); it_right++) {
                if ((*it) == (*it_right)) {
                    isEnd = false;
                    break;
                }
            }
            if (isEnd) {
                errorChar = (*it);
                cout << errorChar << " is the counterfeit coin and it is heavy." << endl;
                break;
            }
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

椰子糖莫莫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值