把玩PathInterpolator

本文介绍了Android中的PathInterpolator,它允许通过贝塞尔曲线定义动画路径。通过两个构造函数,我们可以创建从(0,0)到(1,1)的曲线路径。内部算法利用二分法找到相应索引,并进行线性计算,简化插值过程。path.approximate方法虽然未深入研究,但其返回的点数组是关键所在。" 124888577,2068,OpenDDS XML配置QoS策略详解,"['OpenDDS', 'XML配置', 'QoS策略', 'DDS', 'xerces']

最近发现一个有意思的插值器PathInterpolator,传一个或两个点进去就可当插值器使用。可以看一下两个构造函数,生成的path是一个贝赛尔曲线

 /**
* Create an interpolator for a quadratic Bezier curve. The end points
* <code>(0, 0)</code> and <code>(1, 1)</code> are assumed.
*
* @param controlX The x coordinate of the quadratic Bezier control point.
* @param controlY The y coordinate of the quadratic Bezier control point.
*/
public PathInterpolator(float controlX, float controlY) {
    initQuad(controlX, controlY);
}

/**
* Create an interpolator for a cubic Bezier curve.  The end points
* <code>(0, 0)</code> and <code>(1, 1)</code> are assumed.
*
* @param controlX1 The x coordinate of the first control point of the cubic Bezier.
* @param controlY1 The y coordinate of the first control point of the cubic Bezier.
* @param controlX2 The x coordinate of the second control point of the cubic Bezier.
* @param controlY2 The y coordinate of the second control point of the cubic Bezier.
*/
public PathInterpolator(float controlX1, float controlY1, float controlX2, float controlY2) {
    initCubic(controlX1, controlY1, controlX2, controlY2);
}

private void initQuad(float controlX, float controlY) {
    Path path = new Path();
    path.moveTo(0, 0);
    path.quadTo(controlX, controlY, 1f, 1f);
    initPath(path);
}

private void initCubic(float x1, float y1, float x2, float y2) {
     Path path = new Path();
     path.moveTo(0, 0);
     path.cubicTo(x1, y1, x2, y2, 1f, 1f);
     initPath(path);
}

两个构造函数生成的贝塞尔曲线都是从,(0,0)到(1,1)点的Path。

曲线生成好了之后,会将其重新解析成若干个点的数组

    private void initPath(Path path) {
        float[] pointComponents = path.approximate(PRECISION);

        int numPoints = pointComponents.length / 3;
        if (pointComponents[1] != 0 || pointComponents[2] != 0
                || pointComponents[pointComponents.length - 2] != 1
                || pointComponents[pointComponents.length - 1] != 1) {
        //这个Path的起始点必须是(0,0),终止点必须是(1,1)
            throw new IllegalArgumentException("The Path must start at (0,0) and end at (1,1)");
        }

        mX = new float[numPoints];
        mY = new float[numPoints];
        float prevX = 0;
        float prevFraction = 0;
        int componentIndex = 0;
        for (int i = 0; i < numPoints; i++) {
            float fraction = pointComponents[componentIndex++];
            float x = pointComponents[componentIndex++];
            float y = pointComponents[componentIndex++];
            if (fraction == prevFraction && x != prevX) {
            //判断这个Path是否连续,这个可以借鉴一下
                throw new IllegalArgumentException(
                        "The Path cannot have discontinuity in the X axis.");
            }
            if (x < prevX) {
                throw new IllegalArgumentException("The Path cannot loop back on itself.");
            }
            mX[i] = x;
            mY[i] = y;
            prevX = x;
            prevFraction = fraction;
        }
    }

作为插值器,自然需要复写getInterpolation

@Override
    public float getInterpolation(float t) {
        if (t <= 0) {
            return 0;
        } else if (t >= 1) {
            return 1;
        }
        // Do a binary search for the correct x to interpolate between.
        int startIndex = 0;
        int endIndex = mX.length - 1;
        while (endIndex - startIndex > 1) {
            int midIndex = (startIndex + endIndex) / 2;
            if (t < mX[midIndex]) {
                endIndex = midIndex;
            } else {
                startIndex = midIndex;
            }
        }

        float xRange = mX[endIndex] - mX[startIndex];
        if (xRange == 0) {
            return mY[startIndex];
        }

        float tInRange = t - mX[startIndex];
        float fraction = tInRange / xRange;

        float startY = mY[startIndex];
        float endY = mY[endIndex];
        return startY + (fraction * (endY - startY));
    }

算法里面用二分法找到了对应的index,返回值是一个线性的计算,很简单。

最后看一下path.approximate的算法。

// Returns a float[] with each point along the path represented by 3 floats
    // * fractional length along the path that the point resides
    // * x coordinate
    // * y coordinate
    // Note that more than one point may have the same length along the path in
    // the case of a move.
    // NULL can be returned if the Path is empty.
    static jfloatArray approximate(JNIEnv* env, jclass, jlong pathHandle, float acceptableError)
    {
        SkPath* path = reinterpret_cast<SkPath*>(pathHandle);
        SkASSERT(path);
        SkPath::Iter pathIter(*path, false);
        SkPath::Verb verb;
        SkPoint points[4];
        std::vector<SkPoint> segmentPoints;
        std::vector<float> lengths;
        float errorSquared = acceptableError * acceptableError;

        while ((verb = pathIter.next(points, false)) != SkPath::kDone_Verb) {
            createVerbSegments(verb, points, segmentPoints, lengths, errorSquared);
        }

        if (segmentPoints.empty()) {
            int numVerbs = path->countVerbs();
            if (numVerbs == 1) {
                addMove(segmentPoints, lengths, path->getPoint(0));
            } else {
                // Invalid or empty path. Fall back to point(0,0)
                addMove(segmentPoints, lengths, SkPoint());
            }
        }

        float totalLength = lengths.back();
        if (totalLength == 0) {
            // Lone Move instructions should still be able to animate at the same value.
            segmentPoints.push_back(segmentPoints.back());
            lengths.push_back(1);
            totalLength = 1;
        }

        size_t numPoints = segmentPoints.size();
        size_t approximationArraySize = numPoints * 3;

        float* approximation = new float[approximationArraySize];

        int approximationIndex = 0;
        for (size_t i = 0; i < numPoints; i++) {
            const SkPoint& point = segmentPoints[i];
            approximation[approximationIndex++] = lengths[i] / totalLength;
            approximation[approximationIndex++] = point.x();
            approximation[approximationIndex++] = point.y();
        }

        jfloatArray result = env->NewFloatArray(approximationArraySize);
        env->SetFloatArrayRegion(result, 0, approximationArraySize, approximation);
        delete[] approximation;
        return result;
    }
};

太深入我没有继续研究,不过返回的点数组是这样的

for (size_t i = 0; i < numPoints; i++) {
            const SkPoint& point = segmentPoints[i];
            approximation[approximationIndex++] = lengths[i] / totalLength;
            approximation[approximationIndex++] = point.x();
            approximation[approximationIndex++] = point.y();
        }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值