ionic4中显示一个二维数组

博客围绕首页向模态窗体传值展开,需求是传递一个与数据库返回形式相同的二维数组。实现方法为先声明一个对象,给对象赋值后将其push进数组。最后展示了console.log的输出效果。

需求

  首页向模态窗体传值时,需要传过去一个二维数组,同数据库返回来的形式一样。

数据库返回来的形式

  在这里插入图片描述

实现

  先声明一个对象,给这个对象赋值,把赋完值的对象push进去一个数组。

	for (let i = 0; i < this.foodList.length; i++) {
	
      // 如果这个食物我选择的数量>0
      if (this.SelectFoodNum[i] > 0) {
      
        // 声明一个modalFood对象,并给这个对象赋值
        let modalFood = {
          foodid: this.foodList[i].foodId,
          foodname: this.foodList[i].foodName,
          foodnum: this.SelectFoodNum[i],
          coast: this.foodList[i].price * this.SelectFoodNum[i],
          limitrecord: this.foodList[i].limitRecord,
          limitfood: this.foodList[i].limitFood
        };
        
        // 把这个对象push进数组
        this.modalFoodList.push(modalFood);
      }
    }

效果

  console.log(this.modalFoodList)出来的效果:
  在这里插入图片描述

import numpy as np import matplotlib.pyplot as plt from pymatgen.io.vasp import Vasprun from pymatgen.core.structure import Structure from scipy.signal import savgol_filter from scipy.spatial import cKDTree from tqdm import tqdm import matplotlib as mpl import warnings from collections import defaultdict import os import csv import argparse import multiprocessing from functools import partial import time import types import dill # 忽略可能的警告 warnings.filterwarnings("ignore", category=UserWarning) # 专业绘图设置 - 符合Journal of Chemical Physics要求 plt.style.use('seaborn-v0_8-whitegrid') mpl.rcParams.update({ 'font.family': 'serif', 'font.serif': ['Times New Roman', 'DejaVu Serif'], 'font.size': 12, 'axes.labelsize': 14, 'axes.titlesize': 16, 'xtick.labelsize': 12, 'ytick.labelsize': 12, 'figure.dpi': 600, # 提高分辨率 'savefig.dpi': 600, 'figure.figsize': (8, 6), # 期刊常用尺寸 'lines.linewidth': 2.0, 'legend.fontsize': 10, 'legend.framealpha': 0.8, 'mathtext.default': 'regular', 'axes.linewidth': 1.5, # 加粗坐标轴线 'xtick.major.width': 1.5, 'ytick.major.width': 1.5, 'xtick.major.size': 5, 'ytick.major.size': 5, }) # 1. 增强的原子类型识别函数 - 逐帧识别 def identify_atom_types(struct): """识别所有关键原子类型并排除自身化学键""" # 磷酸氧分类 p_oxygens = {"P=O": [], "P-O": [], "P-OH": []} phosphate_hydrogens = [] # 仅P-OH基团中的H原子 # 水合氢离子识别 hydronium_oxygens = [] hydronium_hydrogens = [] # H₃O⁺中的H原子 # 普通水分子 water_oxygens = [] water_hydrogens = [] # 普通水中的H原子 # 氟离子 fluoride_atoms = [i for i, site in enumerate(struct) if site.species_string == "F"] # 铝离子 aluminum_atoms = [i for i, site in enumerate(struct) if site.species_string == "Al"] # 创建快速邻居查找表 neighbor_cache = defaultdict(list) for i, site in enumerate(struct): if site.species_string == "O": neighbors = struct.get_neighbors(site, r=1.3) h_neighbors = [n[0] for n in neighbors if n[0].species_string == "H"] neighbor_cache[i] = h_neighbors # 识别水合氢离子 (H₃O⁺) if len(h_neighbors) == 3: hydronium_oxygens.append(i) for h_site in h_neighbors: hydronium_hydrogens.append(h_site.index) # 识别磷酸基团 for site in struct: if site.species_string == "P": neighbors = struct.get_neighbors(site, r=2.0) # 扩大搜索半径 # 筛选氧原子邻居 o_neighbors = [(n[0], n[1]) for n in neighbors if n[0].species_string == "O"] if len(o_neighbors) < 4: # 如果找不到4个氧原子,使用旧方法 for neighbor in o_neighbors: nn_site = neighbor[0] if neighbor[1] < 1.55: p_oxygens["P=O"].append(nn_site.index) else: if any(n[0].species_string == "H" for n in struct.get_neighbors(nn_site, r=1.3)): p_oxygens["P-OH"].append(nn_site.index) else: p_oxygens["P-O"].append(nn_site.index) continue # 按距离排序 o_neighbors.sort(key=lambda x: x[1]) # 最近的氧原子为P=O p_double_o = o_neighbors[0][0] p_oxygens["P=O"].append(p_double_o.index) # 其他三个氧原子 for i in range(1, 4): o_site = o_neighbors[i][0] # 检查氧原子上是否有氢 if neighbor_cache.get(o_site.index, []): p_oxygens["P-OH"].append(o_site.index) else: p_oxygens["P-O"].append(o_site.index) # 识别P-OH基团中的H原子 (磷酸中的H) for o_idx in p_oxygens["P-OH"]: # 获取与P-OH氧相连的H原子 h_neighbors = neighbor_cache.get(o_idx, []) for h_site in h_neighbors: if h_site.species_string == "H": phosphate_hydrogens.append(h_site.index) # 识别普通水分子 (排除磷酸氧和水合氢离子) for i, site in enumerate(struct): if site.species_string == "O" and i not in hydronium_oxygens: is_phosphate_oxygen = False for cat in p_oxygens.values(): if i in cat: is_phosphate_oxygen = True break if not is_phosphate_oxygen: water_oxygens.append(i) # 识别普通水分子中的H原子 (水中的H) for o_idx in water_oxygens: h_neighbors = neighbor_cache.get(o_idx, []) for h_site in h_neighbors: if h_site.species_string == "H": water_hydrogens.append(h_site.index) return { "phosphate_oxygens": p_oxygens, "phosphate_hydrogens": phosphate_hydrogens, "water_oxygens": water_oxygens, "water_hydrogens": water_hydrogens, "hydronium_oxygens": hydronium_oxygens, "hydronium_hydrogens": hydronium_hydrogens, "fluoride_atoms": fluoride_atoms, "aluminum_atoms": aluminum_atoms } # 2. RDF计算函数 - 修复负值问题和序列化问题 def process_frame(struct, center_sel, target_sel, r_max, exclude_bonds, bond_threshold): """处理单帧结构计算""" atom_types = identify_atom_types(struct) centers = center_sel(atom_types) targets = target_sel(atom_types) if len(centers) == 0 or len(targets) == 0: return None center_coords = np.array([struct[i].coords for i in centers]) target_coords = np.array([struct[i].coords for i in targets]) lattice = struct.lattice kdtree = cKDTree(target_coords, boxsize=lattice.abc) distances, indices = kdtree.query(center_coords, k=min(50, len(targets)), distance_upper_bound=r_max) valid_distances = [] for i, dist_list in enumerate(distances): center_idx = centers[i] for j, dist in enumerate(dist_list): if dist > r_max: continue target_idx = targets[indices[i][j]] if exclude_bonds: actual_dist = struct.get_distance(center_idx, target_idx) if actual_dist < bond_threshold: continue valid_distances.append(dist) return { "distances": valid_distances, "n_centers": len(centers), "n_targets": len(targets), "volume": struct.volume } def calculate_rdf_parallel(structures, center_sel, target_sel, r_max=8.0, bin_width=0.05, exclude_bonds=True, bond_threshold=1.3, workers=1): """ 并行计算径向分布函数 :param workers: 并行工作进程数 """ bins = np.arange(0, r_max, bin_width) hist = np.zeros(len(bins) - 1) total_centers = 0 total_targets = 0 total_volume = 0 # 准备参数 - 使用dill解决lambda序列化问题 dill.settings['recurse'] = True func = partial(process_frame, center_sel=center_sel, target_sel=target_sel, r_max=r_max, exclude_bonds=exclude_bonds, bond_threshold=bond_threshold) # 使用多进程池 with multiprocessing.Pool(processes=workers) as pool: results = [] # 使用imap_unordered提高效率 for res in tqdm(pool.imap_unordered(func, structures), total=len(structures), desc="Calculating RDF"): results.append(res) # 处理结果 for res in results: if res is None: continue valid_distances = res["distances"] n_centers = res["n_centers"] n_targets = res["n_targets"] volume = res["volume"] # 累加计数 if len(valid_distances) > 0: hist += np.histogram(valid_distances, bins=bins)[0] total_centers += n_centers total_targets += n_targets total_volume += volume # 修正归一化 - 解决负值问题 n_frames = len(structures) avg_density = total_targets / total_volume r = bins[:-1] + bin_width/2 rdf = np.zeros_like(r) for i in range(len(hist)): r_lower = bins[i] r_upper = bins[i+1] shell_vol = 4/3 * np.pi * (r_upper**3 - r_lower**3) expected_count = shell_vol * avg_density * total_centers # 避免除以零 if expected_count > 1e-10: rdf[i] = hist[i] / expected_count else: rdf[i] = 0 # 更稳健的平滑处理 - 避免边界效应 if len(rdf) > 10: window_length = min(15, len(rdf)//2*2+1) polyorder = min(5, window_length-1) rdf_smoothed = savgol_filter(rdf, window_length=window_length, polyorder=polyorder, mode='mirror') else: rdf_smoothed = rdf # 计算主要峰值 peak_info = {} mask = (r >= 1.5) & (r <= 3.0) if np.any(mask) and np.any(rdf_smoothed[mask] > 0): peak_idx = np.argmax(rdf_smoothed[mask]) peak_pos = r[mask][peak_idx] peak_val = rdf_smoothed[mask][peak_idx] peak_info = {"position": peak_pos, "value": peak_val} else: peak_info = {"position": None, "value": None} return r, rdf_smoothed, peak_info # 3. 定义选择器函数(避免lambda序列化问题) def selector_phosphate_P_double_O(atom_types): return atom_types["phosphate_oxygens"]["P=O"] def selector_phosphate_P_OH(atom_types): return atom_types["phosphate_oxygens"]["P-OH"] def selector_phosphate_P_O(atom_types): return atom_types["phosphate_oxygens"]["P-O"] def selector_phosphate_hydrogens(atom_types): return atom_types["phosphate_hydrogens"] def selector_water_hydrogens(atom_types): return atom_types["water_hydrogens"] def selector_hydronium_hydrogens(atom_types): return atom_types["hydronium_hydrogens"] def selector_water_oxygens(atom_types): return atom_types["water_oxygens"] def selector_hydronium_oxygens(atom_types): return atom_types["hydronium_oxygens"] def selector_fluoride_atoms(atom_types): return atom_types["fluoride_atoms"] def selector_aluminum_atoms(atom_types): return atom_types["aluminum_atoms"] def selector_all_phosphate_oxygens(atom_types): return (atom_types["phosphate_oxygens"]["P=O"] + atom_types["phosphate_oxygens"]["P-O"] + atom_types["phosphate_oxygens"]["P-OH"]) # 4. RDF分组定义 def get_rdf_groups(): """返回RDF分组配置(使用预定义函数避免序列化问题)""" return { "Phosphate_H_Bonds": [ # 磷酸作为受体 (selector_phosphate_P_double_O, lambda s: selector_water_hydrogens(s) + selector_hydronium_hydrogens(s), "P=O···H", "#1f77b4"), (selector_phosphate_P_OH, lambda s: selector_water_hydrogens(s) + selector_hydronium_hydrogens(s), "P-OH···H", "#ff7f0e"), (selector_phosphate_P_O, lambda s: selector_water_hydrogens(s) + selector_hydronium_hydrogens(s), "P-O···H", "#17becf"), # 磷酸作为供体 (selector_phosphate_hydrogens, lambda s: selector_water_oxygens(s) + selector_hydronium_oxygens(s), "P-OH···O", "#d62728"), ], "Hydronium_H_Bonds": [ # 水合氢离子作为受体 (selector_hydronium_oxygens, lambda s: selector_water_hydrogens(s) + selector_phosphate_hydrogens(s), r"H$ _3$ O$^+$ O···H", "#9467bd"), # 水合氢离子作为供体 (selector_hydronium_hydrogens, selector_water_oxygens, r"H$ _3$ O$^+$ H···O$ _w$", "#8c564b"), (selector_hydronium_hydrogens, selector_all_phosphate_oxygens, r"H$ _3$ O$^+$ H···O$ _p$", "#e377c2"), ], "Water_Network": [ # 水分子之间的氢键 (selector_water_oxygens, selector_water_hydrogens, r"O$ _w$···H$ _w$", "#2ca02c"), # 水作为受体与水合氢离子供体 (selector_water_oxygens, selector_hydronium_hydrogens, r"O$ _w$···H$ _h$", "#d62728"), ], "Fluoride_H_Bonds": [ # 氟离子作为受体 (selector_fluoride_atoms, selector_water_hydrogens, r"F···H$ _w$", "#2ca02c"), (selector_fluoride_atoms, selector_phosphate_hydrogens, r"F···H$ _p$", "#d62728"), (selector_fluoride_atoms, selector_hydronium_hydrogens, r"F···H$ _h$", "#9467bd"), ], "Aluminum_Coordination": [ # 铝与水中的氧 (selector_aluminum_atoms, selector_water_oxygens, r"Al···O$ _w$", "#1f77b4"), # 铝与磷酸中的氧 (selector_aluminum_atoms, selector_all_phosphate_oxygens, r"Al···O$ _p$", "#ff7f0e"), # 铝与氟的配位 (selector_aluminum_atoms, selector_fluoride_atoms, r"Al···F", "#17becf"), ], "Phosphate_Phosphate_H_Bonds": [ # 磷酸基团内部的氢键作用 (selector_phosphate_hydrogens, selector_phosphate_P_double_O, r"P-OH···P=O", "#1f77b4"), (selector_phosphate_hydrogens, selector_phosphate_P_O, r"P-OH···P-O", "#ff7f0e"), (selector_phosphate_hydrogens, selector_phosphate_P_OH, r"P-OH···P-OH", "#d62728"), ], "Phosphate_Phosphate_Interactions": [ # 1. 所有磷酸氧之间的整体聚集 (selector_all_phosphate_oxygens, selector_all_phosphate_oxygens, "All P-Oxygens", "#1f77b4"), # 2. 不同类型磷酸氧之间的特定相互作用 (selector_phosphate_P_double_O, selector_phosphate_P_double_O, "P=O···P=O", "#ff7f0e"), (selector_phosphate_P_double_O, selector_phosphate_P_O, "P=O···P-O", "#2ca02c"), (selector_phosphate_P_double_O, selector_phosphate_P_OH, "P=O···P-OH", "#d62728"), (selector_phosphate_P_O, selector_phosphate_P_OH, "P-O···P-OH", "#9467bd"), (selector_phosphate_P_OH, selector_phosphate_P_OH, "P-OH···P-OH", "#8c564b"), # 3. 氢键供体-受体关系 (P-OH中的H与其他磷酸氧) (selector_phosphate_hydrogens, selector_phosphate_P_double_O, "P-OH···P=O (H-bond)", "#e377c2"), (selector_phosphate_hydrogens, selector_phosphate_P_O, "P-OH···P-O (H-bond)", "#7f7f7f"), (selector_phosphate_hydrogens, selector_phosphate_P_OH, "P-OH···P-OH (H-bond)", "#bcbd22") ] } # 5. 主程序 - 优化并行处理 def main(workers=1): # 定义要处理的体系 vasprun_files = { "System1": "vasprun1.xml", "System2": "vasprun2.xml", "System3": "vasprun3.xml", "System4": "vasprun4.xml" } # 获取RDF分组配置 rdf_groups = get_rdf_groups() # 存储所有数据 all_system_data = {} group_y_max = {group_name: 0 for group_name in list(rdf_groups.keys())} global_x_max = 6.0 # 创建输出目录 os.makedirs("RDF_Plots", exist_ok=True) # 计算所有体系的所有RDF数据 for system_name, vasprun_file in vasprun_files.items(): print(f"\n{'='*50}") print(f"Processing {system_name}: {vasprun_file} with {workers} workers") print(f"{'='*50}") start_time = time.time() try: # 加载VASP结果 vr = Vasprun(vasprun_file, ionic_step_skip=5) structures = vr.structures print(f"Loaded {len(structures)} frames") # 存储体系数据 system_data = { "rdf_results": {}, "peak_infos": {} } # 计算所有RDF分组 for group_name, pairs in rdf_groups.items(): system_data["rdf_results"][group_name] = {} system_data["peak_infos"][group_name] = {} group_y_max_current = 0 for center_sel, target_sel, label, color in pairs: print(f"\nCalculating RDF for: {label}") try: r, rdf, peak_info = calculate_rdf_parallel( structures, center_sel, target_sel, r_max=global_x_max, exclude_bonds=True, bond_threshold=1.3, workers=workers ) system_data["rdf_results"][group_name][label] = (r, rdf, color) system_data["peak_infos"][group_name][label] = peak_info if len(rdf) > 0: current_max = np.max(rdf) if current_max > group_y_max_current: group_y_max_current = current_max if peak_info["position"] is not None: print(f" Peak for {label}: {peak_info['position']:.3f} Å (g(r) = {peak_info['value']:.2f})") else: print(f" No significant peak found for {label} in 1.5-3.0 Å range") except Exception as e: print(f"Error calculating RDF for {label}: {str(e)}") system_data["rdf_results"][group_name][label] = (np.array([]), np.array([]), color) system_data["peak_infos"][group_name][label] = {"position": None, "value": None} if group_y_max_current > group_y_max[group_name]: group_y_max[group_name] = group_y_max_current all_system_data[system_name] = system_data elapsed = time.time() - start_time print(f"\nCompleted processing for {system_name} in {elapsed:.2f} seconds") except Exception as e: print(f"Error processing {system_name}: {str(e)}") # 为每个分组添加余量 for group_name in group_y_max: group_y_max[group_name] = max(group_y_max[group_name] * 1.15, 3.0) # 确保最小值 # 第二步:生符合期刊要求的图表 for system_name, system_data in all_system_data.items(): print(f"\nGenerating publication-quality plots for {system_name}") for group_name, group_data in system_data["rdf_results"].items(): fig, ax = plt.subplots(figsize=(8, 6)) for label, (r, rdf, color) in group_data.items(): if len(r) > 0 and len(rdf) > 0: ax.plot(r, rdf, color=color, label=label, linewidth=2.0) ax.set_xlim(0, global_x_max) ax.set_ylim(0, group_y_max[group_name]) # 期刊格式标签 ax.set_xlabel('Radial Distance (Å)', fontweight='bold') ax.set_ylabel('g(r)', fontweight='bold') # 添加体系名称到标题 title_map = { "Phosphate_H_Bonds": "Phosphate Hydrogen Bonding", "Hydronium_H_Bonds": "Hydronium Ion Hydrogen Bonding", "Water_Network": "Water Network Hydrogen Bonding", "Fluoride_H_Bonds": "Fluoride Ion Hydrogen Bonding", "Aluminum_Coordination": "Aluminum Coordination Environment", "Phosphate_Phosphate_H_Bonds": "Phosphate-Phosphate Hydrogen Bonding", "Phosphate_Phosphate_Interactions": "Phosphate-Phosphate Interactions" } ax.set_title(f"{system_name}: {title_map[group_name]}", fontsize=16, pad=15) # 精简图例 ax.legend(ncol=1, loc='best', framealpha=0.8, fontsize=10) # 添加氢键区域标记 ax.axvspan(1.5, 2.5, alpha=0.1, color='green', zorder=0) # 添加网格 ax.grid(True, linestyle='--', alpha=0.5) # 保存高分辨率图片 plt.tight_layout() filename = os.path.join("RDF_Plots", f"RDF_{system_name}_{group_name}.tiff") plt.savefig(filename, bbox_inches='tight', dpi=600, format='tiff') print(f"Saved publication plot: {filename}") plt.close() # 保存Origin兼容数据 save_origin_data(system_name, system_data) print("\nAll RDF analysis completed successfully!") def save_origin_data(system_name, system_data): """保存Origin兼容格式数据""" os.makedirs("Origin_Data", exist_ok=True) system_dir = os.path.join("Origin_Data", system_name) os.makedirs(system_dir, exist_ok=True) # 保存峰值信息 peak_info_path = os.path.join(system_dir, f"Peak_Positions_{system_name}.csv") with open(peak_info_path, 'w', newline='') as csvfile: writer = csv.writer(csvfile) writer.writerow(["Group", "Interaction", "Peak Position (A)", "g(r) Value"]) for group_name, peaks in system_data["peak_infos"].items(): for label, info in peaks.items(): if info["position"] is not None: writer.writerow([group_name, label, f"{info['position']:.3f}", f"{info['value']:.3f}"]) else: writer.writerow([group_name, label, "N/A", "N/A"]) print(f"Saved peak positions: {peak_info_path}") # 保存RDF数据 for group_name, group_results in system_data["rdf_results"].items(): group_dir = os.path.join(system_dir, group_name) os.makedirs(group_dir, exist_ok=True) for label, (r, rdf, color) in group_results.items(): if len(r) > 0 and len(rdf) > 0: safe_label = label.replace(" ", "_").replace("/", "_").replace("=", "_") safe_label = safe_label.replace("(", "").replace(")", "").replace("$", "") filename = f"RDF_{system_name}_{group_name}_{safe_label}.csv" filepath = os.path.join(group_dir, filename) with open(filepath, 'w', newline='') as csvfile: writer = csv.writer(csvfile) writer.writerow(["Distance (A)", "g(r)"]) for i in range(len(r)): writer.writerow([f"{r[i]:.6f}", f"{rdf[i]:.6f}"]) print(f"Saved Origin data: {filename}") if __name__ == "__main__": # 设置命令行参数 parser = argparse.ArgumentParser(description='Calculate RDF for VASP simulations') parser.add_argument('--workers', type=int, default=multiprocessing.cpu_count(), help=f'Number of parallel workers (default: {multiprocessing.cpu_count()})') args = parser.parse_args() print(f"Starting RDF analysis with {args.workers} workers...") main(workers=args.workers) 这是你之前输出的可行的代码,只不过其中需要修改当第一帧中P-O原子数量为0时,kdtree.query()返回一个标量(numpy.float64)而非数组,后续代码尝试迭代这个标量导致'numpy.float64' object is not iterable错误,必须每帧重新识别原子类型才能捕捉质子转移过程
最新发布
07-10
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值