文献阅读(part3)--Self-taught Clustering

本文介绍了自学习聚类,一种无监督迁移学习任务,利用大量辅助无标记数据增强小规模目标数据的聚类性能。通过共聚类算法,发掘辅助数据中的特征来改进目标数据的聚类表示,实验表明,这种方法在图像聚类等场景下能显著优于传统聚类方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

学习笔记,仅供参考




Abstract


This paper focuses on a new clustering task, called self-taught clustering. Self-taught clustering is an instance of unsupervised transfer learning, which aims at clustering a small collection of target unlabeled data with the help of a large amount of auxiliary unlabeled data. The target and auxiliary data can be different in topic distribution. We show that even when the target data are not sufficient to allow effective learning of a high quality feature representation, it is possible to learn the useful features with the help of the auxiliary data on which the target data can be clustered effectively. We propose a co-clustering based self-taught clustering algorithm

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GUI Research Group

谢谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值