题目链接:https://pintia.cn/problem-sets/994805342720868352/problems/994805400954585088
For any 4-digit integer except the ones with all the digits being the same, if we sort the digits in non-increasing order first, and then in non-decreasing order, a new number can be obtained by taking the second number from the first one. Repeat in this manner we will soon end up at the number 6174
-- the black hole of 4-digit numbers. This number is named Kaprekar Constant.
For example, start from 6767
, we'll get:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...
Given any 4-digit number, you are supposed to illustrate the way it gets into the black hole.
Input Specification:
Each input file contains one test case which gives a positive integer N in the range (0,104).
Output Specification:
If all the 4 digits of N are the same, print in one line the equation N - N = 0000
. Else print each step of calculation in a line until 6174
comes out as the difference. All the numbers must be printed as 4-digit numbers.
Sample Input 1:
6767
Sample Output 1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
Sample Input 2:
2222
Sample Output 2:
2222 - 2222 = 0000
如果输入6714,则输出7641-1467=6174
#include<iostream>
#include<string>
#include<algorithm>
using namespace std;
int main(){
int a[5];
int n;
cin>>n;
int minn,maxx,t;
do{
for(int i=0;i<4;i++){
a[i]=n%10;
n/=10;
}
sort(a,a+4);
minn=a[0]*1000+a[1]*100+a[2]*10+a[3];
maxx=a[3]*1000+a[2]*100+a[1]*10+a[0];
t=maxx-minn;
printf("%04d - %04d = %04d\n",maxx,minn,t);
n=t;
}while(n!=6174&&n!=0);
return 0;
}