思想
快速幂
- 数的快速幂
矩阵的快速幂
1.数的快速幂
上模板
LL quickpow(LL a,int b,LL m)
{
LL ans = 1;
if(a == 0) return 0;
while(b)
{
if(b&1)ans = (ans * a)%m;
b = (b >> 1);
a = (a*a)%m;
}
return ans;
}
撸袖子写题:
poj 1995
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
#define LL long long
const int maxn = 45005;
LL data[maxn][2];
LL quickpow(LL a,int b,LL m)
{
LL ans = 1;
if(a == 0) return 0;
while(b)
{
if(b&1)ans = (ans * a)%m;
b = (b >> 1);
a = (a*a)%m;
}
return ans;
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int n,m;
scanf("%d%d",&m,&n);
LL ans = 0;
for(int i = 0; i < n ; i++)
{
LL a; int b;
scanf("%I64d%d",&a,&b);
LL now = quickpow(a,b,m);
ans = (ans + now)%m;
}
printf("%I64d\n",ans);
}
return 0;
}
cf185A
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
#define LL long long
const int mod = 1000000000+7;
int solve(LL n)
{
LL ans = 1;
LL a = 2;
while(n)
{
if(n&1) ans = (ans*a)%mod;
n = (n>>1);
a = (a*a)%mod;
}
return ans;
}
int main()
{
LL n;
while(~scanf("%I64d",&n))
{
if(n == 0) {printf("1\n");continue;}
LL ans = (solve(2*n-1) + solve(n-1))%mod;
printf("%I64d\n",ans);
}
return 0;
}
2.矩阵快速幂
和数的快速幂类似。
撸袖子继续写题:
经典快速幂:
poj3070 求Fibonacci数列。
#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std;
const int mod = 10000;
struct Matrix
{
int data[3][3];
Matrix()
{
for(int i = 0; i < 2 ; i++)
for(int j = 0; j < 2 ; j++)
data[i][j] = 0;
}
};
Matrix multi(Matrix a , Matrix b)
{
Matrix c;
for(int i = 0; i < 2 ; i++)
for(int j = 0; j < 2 ; j++)
for(int k = 0; k < 2 ; k++)
c.data[i][j] = (c.data[i][j] +(a.data[i][k])%mod*(b.data[k][j])%mod)%mod;
return c;
}
int quickpow(int b)
{
Matrix ans,a;
ans.data[0][0] = 1,ans.data[0][1] = 0,ans.data[1][0] = 0,ans.data[1][1] = 1;
a.data[0][0] = 1,a.data[0][1] = 1,a.data[1][0] = 1,a.data[1][1] = 0;
if(b == 0) return 0;
else
{
while(b)
{
if(b&1) ans = multi(ans,a);
a = multi(a,a);
b = (b>>1);
}
}
return ans.data[0][1];
}
int main()
{
int n;
while(~scanf("%d",&n) && ~n)
printf("%d\n",quickpow(n));
return 0;
}
hdu1757
这个的递推和上面那个几乎一毛一样,只不过这个是开到了10的矩阵。
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
int k,mod;
int a[10];
struct node
{
int m[10][10];
node()
{
for(int i = 0; i < 10; i++)
for(int j = 0; j < 10; j++)
m[i][j] = 0;
}
};
node operator*(node mat1,node mat2)
{
node temp;
for(int i = 0; i < 10; i++)
for(int j = 0; j < 10; j++)
for(int k = 0; k < 10; k++)
temp.m[i][j] = (temp.m[i][j] + mat1.m[i][k]*mat2.m[k][j])%mod;
return temp;
}
int quick()
{
node ans;
for(int i = 0; i < 10; i++) ans.m[i][i] = 1;
node ori;
for(int i = 0; i < 10; i++) {ori.m[0][i] = a[i];if(i > 0)ori.m[i][i-1] = 1;}
if(k < 10)return a[k];
else
{
k = k-9;
while(k)
{
if(k&1) ans = ans*ori;
k = (k>>1);
ori = ori*ori;
}
}
node temp;
for(int i = 0; i < 10; i++) temp.m[i][0] = 9-i;
temp = ans*temp;
printf("%d\n",temp.m[0][0]);
return 0;
}
int main()
{
while(~scanf("%d%d",&k,&mod))
{
for(int i = 0; i < 10 ; i++)
scanf("%d",&a[i]);
quick();
}
return 0;
}
hdu2842
求n连环的解法最少几步。
醉了,根本不知道n连环长什么样。。
只能查出来。。
递推式:F(n) = F(n-1) + 2* F(n-2)+1;
所以就可以构造乘的那个矩阵。
110200101
#include<cstdio>
#include <cstring>
#include <iostream>
using namespace std;
#define LL long long
const int mod = 200907;
struct node
{
int m[3][3];
node()
{
for(int i = 0; i < 3; i++)
for(int j = 0; j < 3; j++)
m[i][j] = 0;
}
};
node operator*(node mat1,node mat2)
{
node temp;
for(int i = 0; i < 3; i++)
for(int j = 0; j < 3; j++)
for(int k = 0; k < 3; k++)
temp.m[i][j] = (temp.m[i][j] + ((long long)mat1.m[i][k]*mat2.m[k][j])%mod)%mod;
return temp;
}
int quick(int n)
{
node ans,a;
if(n <= 2) { printf("%d\n",n); return 0; }
for(int i = 0; i < 3; i++) {ans.m[i][i] = 1;}
a.m[0][0] = 1;a.m[0][1] = 2,a.m[0][2] = 1;
a.m[1][0] = 1; a.m[2][2] = 1;
n = n-2;
while(n)
{
if(n&1) ans = ans*a;
n = (n>>1);
a = a*a;
}
LL res = 0;
int x[3] = {2,1,1};
for(int i = 0; i < 3; i++)
res = (res + ((long long)ans.m[0][i]*x[i])%mod)%mod;
printf("%I64d\n",res);
return 0;
}
int main()
{
int n;
while(~scanf("%d",&n) && n)
{
quick(n);
}
return 0;
}