input_data.py直接先将图片路径和标签对应为两个列表,然后用Tensorflow的模块生产批次batch
- import os
- import tensorflow as tf
- import matplotlib.pyplot as plt
- import numpy as np
-
- train_path = ‘D:/python学习/神经网络动物分类/train/’
- test_path = ‘D:/python学习/神经网络动物分类/test/’
-
- classes = [“airplane”, “automobile”,“bird”,“cat”,“deer”,
- “dog”,“frog”,“horse”,“ship”,“truck”]
-
-
- def get_files(file_dir):
- # file_dir: 文件夹路径
- # return: 乱序后的图片和标签
- img_list = []
- label_list = []
- for index, name in enumerate(classes):
- class_path = file_dir + name + “/”
- for img_name in os.listdir(class_path):
- img_path = class_path + img_name
- img_list.append(img_path)
- label_list.append(int(index))
-
- temp = np.array([img_list, label_list])
- temp = temp.transpose() # 转置
- np.random.shuffle(temp)
- img_list = list(temp[:, 0])
- label_list = list(temp[:, 1])
- label_list = [int(i) for i in label_list]
-
- return img_list, label_list
-
-
- def get_batch(image, label, image_W, image_H, batch_size, capacity):
- # image, label: 要生成batch的图像的地址和标签list
- # image_W, image_H: 图片的宽高
- # batch_size: 每个batch有多少张图片
- # capacity: 队列容量
- # return: 图像和标签的batch
-
- # 将python.list类型转换成tf能够识别的格式
- image = tf.cast(image, tf.string)
- label = tf.cast(label, tf.int32)
-
- # 生成队列
- input_queue = tf.train.slice_input_producer([image, label])
-
- image_contents = tf.read_file(input_queue[0])
- label = input_queue[1]
- image = tf.image.decode_jpeg(image_contents, channels=3)
-
- image = tf.image.resize_images(image, [image_H, image_W], method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
- image = tf.cast(image, tf.float32)
-
- image_batch, label_batch = tf.train.batch([image, label],
- batch_size=batch_size,
- num_threads=64, # 线程
- capacity=capacity)
- return image_batch, label_batch
-
- # 测试两个函数是否成功运行
- ”“”
- if __name__ == ‘__main__’:
- BATCH_SIZE = 2
- CAPACITY = 256
- IMG_W = 32
- IMG_H = 32
- image_list, label_list = get_files(train_path)
- image_batch, label_batch = get_batch(image_list, label_list, IMG_W, IMG_H, BATCH_SIZE, CAPACITY)
- with tf.Session() as sess:
- i = 0
- coord = tf.train.Coordinator()
- threads = tf.train.start_queue_runners(coord=coord)
- try:
- while not coord.should_stop() and i < 1:
- img, label = sess.run([image_batch, label_batch])
- for j in np.arange(BATCH_SIZE):
- print(“label: %d” % label[j])
- plt.imshow(img[j, :, :, :])
- plt.show()
- i += 1
- except tf.errors.OutOfRangeError:
- print(“done!”)
- finally:
- coord.request_stop()
- coord.join(threads)
- “”“
model.py函数实现了模型以及预测
- #coding=utf-8
- import tensorflow as tf
-
- def inference(images, batch_size, n_classes):
-
- with tf.variable_scope('conv1') as scope:
- # 卷积盒的为 3*3 的卷积盒,图片厚度是3,输出是16个featuremap
- weights = tf.get_variable('weights',
- shape=[3, 3, 3, 16],
- dtype=tf.float32,
- initializer=tf.truncated_normal_initializer(stddev=0.1, dtype=tf.float32))
- biases = tf.get_variable('biases',
- shape=[16],
- dtype=tf.float32,
- initializer=tf.constant_initializer(0.1))
- conv = tf.nn.conv2d(images, weights, strides=[1, 1, 1, 1], padding='SAME')
- pre_activation = tf.nn.bias_add(conv, biases)
- conv1 = tf.nn.relu(pre_activation, name=scope.name)
-
- with tf.variable_scope('pooling1_lrn') as scope:
- pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name='pooling1')
- norm1 = tf.nn.lrn(pool1, depth_radius=4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm1')
-
- with tf.variable_scope('conv2') as scope:
- weights = tf.get_variable('weights',
- shape=[3, 3, 16, 16],
- dtype=tf.float32,
- initializer=tf.truncated_normal_initializer(stddev=0.1, dtype=tf.float32))
- biases = tf.get_variable('biases',
- shape=[16],
- dtype=tf.float32,
- initializer=tf.constant_initializer(0.1))
- conv = tf.nn.conv2d(norm1, weights, strides=[1, 1, 1, 1], padding='SAME')
- pre_activation = tf.nn.bias_add(conv, biases)
- conv2 = tf.nn.relu(pre_activation, name='conv2')
-
- # pool2 and norm2
- with tf.variable_scope('pooling2_lrn') as scope:
- norm2 = tf.nn.lrn(conv2, depth_radius=4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm2')
- pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1], strides=[1, 1, 1, 1], padding='SAME', name='pooling2')
-
- with tf.variable_scope('local3') as scope:
- reshape = tf.reshape(pool2, shape=[batch_size, -1])
- dim = reshape.get_shape()[1].value
- weights = tf.get_variable('weights',
- shape=[dim, 128],
- dtype=tf.float32,
- initializer=tf.truncated_normal_initializer(stddev=0.005, dtype=tf.float32))
- biases = tf.get_variable('biases',
- shape=[128],
- dtype=tf.float32,
- initializer=tf.constant_initializer(0.1))
- local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name)
-
- # local4
- with tf.variable_scope('local4') as scope:
- weights = tf.get_variable('weights',
- shape=[128, 128],
- dtype=tf.float32,
- initializer=tf.truncated_normal_initializer(stddev=0.005, dtype=tf.float32))
- biases = tf.get_variable('biases',
- shape=[128],
- dtype=tf.float32,
- initializer=tf.constant_initializer(0.1))
- local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name='local4')
-
- # softmax
- with tf.variable_scope('softmax_linear') as scope:
- weights = tf.get_variable('softmax_linear',
- shape=[128, n_classes],
- dtype=tf.float32,
- initializer=tf.truncated_normal_initializer(stddev=0.005, dtype=tf.float32))
- biases = tf.get_variable('biases',
- shape=[n_classes],
- dtype=tf.float32,
- initializer=tf.constant_initializer(0.1))
- softmax_linear = tf.add(tf.matmul(local4, weights), biases, name='softmax_linear')
-
- return softmax_linear
-
-
-
- def losses(logits, labels):
- with tf.variable_scope('loss') as scope:
- cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits \
- (logits=logits, labels=labels, name='xentropy_per_example')
- loss = tf.reduce_mean(cross_entropy, name='loss')
- tf.summary.scalar(scope.name + '/loss', loss)
- return loss
-
- def trainning(loss, learning_rate):
- with tf.name_scope('optimizer'):
- optimizer = tf.train.AdamOptimizer(learning_rate= learning_rate)
- global_step = tf.Variable(0, name='global_step', trainable=False)
- train_op = optimizer.minimize(loss, global_step= global_step)
- return train_op
-
- def evaluation(logits, labels):
- with tf.variable_scope('accuracy') as scope:
- correct = tf.nn.in_top_k(logits, labels, 1)
- correct = tf.cast(correct, tf.float16)
- accuracy = tf.reduce_mean(correct)
- tf.summary.scalar(scope.name + '/accuracy', accuracy)
- return accuracy
train.py函数实现了训练过程
- import os
- import numpy as np
- import tensorflow as tf
- import input_data
- import model
-
- N_CLASSES = 10
- IMG_H = 32
- IMG_W = 32
- BATCH_SIZE = 200
- CAPACITY = 2000
- MAX_STEP = 15000
- learning_rate = 0.0001
-
- def run_training():
-
- train_dir = "D:\\python学习\\神经网络动物分类\\train\\"
- logs_train_dir = "logs\\"
- train, train_label = input_data.get_files(train_dir)
- train_batch, train_label_batch = input_data.get_batch(train,
- train_label,
- IMG_W,
- IMG_H,
- BATCH_SIZE,
- CAPACITY)
- train_logits = model.inference(train_batch, BATCH_SIZE, N_CLASSES)
- train_loss = model.losses(train_logits, train_label_batch)
- train_op = model.trainning(train_loss, learning_rate)
- train_acc = model.evaluation(train_logits, train_label_batch)
-
- summary_op = tf.summary.merge_all()
- sess = tf.Session()
- train_writer = tf.summary.FileWriter(logs_train_dir, sess.graph)
- saver = tf.train.Saver()
-
- sess.run(tf.global_variables_initializer())
- coord = tf.train.Coordinator()
- threads = tf.train.start_queue_runners(sess=sess, coord=coord)
-
- try:
- for step in np.arange(MAX_STEP):
- if coord.should_stop():
- break
- _, tra_loss, tra_acc = sess.run([train_op, train_loss, train_acc])
-
- if step % 100 == 0:
- print("Step %d, train loss = %.2f, train accuracy = %.2f%%" % (step, tra_loss, tra_acc))
- summary_str = sess.run(summary_op)
- train_writer.add_summary(summary_str, step)
- if step % 2000 == 0 or (step + 1) == MAX_STEP:
- checkpoint_path = os.path.join(logs_train_dir, "model.ckpt")
- saver.save(sess, checkpoint_path, global_step=step)
- except tf.errors.OutOfRangeError:
- print("Done training -- epoch limit reached.")
- finally:
- coord.request_stop()
-
- coord.join(threads)
- sess.close()
-
- if __name__ == '__main__':
- run_training()
</div>