/**
* 引进一个二维数组c[][],用c[i][j]记录X[i]与Y[j] 的LCS 的长度,
* b[i][j]记录c[i][j]是通过哪一个子问题的值求得的,以决定搜索的方向。
* 我们是自底向上进行递推计算,那么在计算c[i,j]之前,c[i-1][j-1],c[i-1][j]与c[i][j-1]均已计算出来。
* 此时我们根据X[i] = Y[j]还是X[i] != Y[j],就可以计算出c[i][j]。
*/
public class LCSProblem
{
public static void main(String[] args)
{
String[] x = {"","a" , "b" , "c" , "b" , "d" , "a" , "b","q","w"};
String[] y = {"","b" , "d" , "c" , "a" , "b" , "a"};
int[][] b = getLength(x, y);
Display(b, x, x.length-1, y.length-1);
}
public static int[][] getLength(String[] x, String[] y)
{
int[][] b = new int[x.length][y.length]; //记录c[i][j]是通过哪一个子问题的值求得的
int[][] c = new int[x.length][y.length]; //记录X[i]与Y[j] 的LCS 的长度
for(int i = 0; i < x.length; i++)
c[i][0] = 0;
for(int j = 1; j < y.length; j++)
c[0][j] = 0;
for(int i=1; i<x.length; i++)
{
for(int j=1; j<y.length; j++)
{
if( x[i] == y[j])
{
c[i][j] = c[i-1][j-1] + 1;
b[i][j] = 1;
}
else if(c[i-1][j] >= c[i][j-1])
{
c[i][j] = c[i-1][j];
b[i][j] = 0;
}
else
{
c[i][j] = c[i][j-1];
b[i][j] = -1;
}
}
}
return b;
}
public static void Display(int[][] b, String[] x, int i, int j)
{
if(i == 0 || j == 0)
return;
if(b[i][j] == 1)
{
Display(b, x, i-1, j-1);
System.out.print(x[i] + " ");
}
else if(b[i][j] == 0)
{
Display(b, x, i-1, j);
}
else if(b[i][j] == -1)
{
Display(b, x, i, j-1);
}
}
}