声明:本文中图片资料和部分文字材料引自网络,仅为自己学习记录和供网络学习者分享,侵删。
目录
神经网络现在已经用烂了,因此介绍部分我们只做简要介绍。如果对基础概念还不清楚的同学建议搜索网上其他一些学习资料先弄懂基本的一些概念。
什么是人工神经网络(ANN)?
来源于生物学概念:如维基百科中所言
In machine learning and cognitive science, artificial neural networks (ANNs) are a family of statistical learning models inspired by biological neural networks (the central nervous systems of animals, in particular the brain) and are used to estimate or approximate functions that can depend on a large number of inputs and are generally unknown.
人工神经元模型
常用的激活函数:
神经网络的分类:
-
– 按照连接方式,可以分为:前向神经网络 vs. 反馈(递归)神经网络
-
– 按照学习方式,可以分为:有导师学习神经网络 vs. 无导师学习神经网络
-
– 按照实现功能,可以分为:拟合(回归)神经网络 vs. 分类神经网络
BP神经网络:
所谓BP只是神经学习训练的一个方法,是一种有监督的学习方法。BP的激活函数要求可微。
传播:
-
Forward propagation of a training pattern’s input through the neural network in order to generate the propagation’s output activations.
-
Back propagation of the propagation’s output activations through the neural network using the training pattern’s target in order to generate the deltas of all output and hidden neurons.
权重更新:
-
Multiply its output delta and input activation to get the gradient of the weight.
-
Bring the weight in the opposite direction of the gradient by subtracting a ration of it from the weight.
BP神经网络计算原理:
我们举一个4层的例子,如下图,有2个隐含层。
针对每一个神经元,它的计算方法是: