package xxx.xxx.xxx;
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
/*
* The following iterative sequence is defined for the set of positive integers:
* n → n/2 (n is even)
* n → 3n + 1 (n is odd)
* Using the rule above and starting with 13, we generate the following sequence:
* 13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1
* It can be seen that this sequence (starting at 13 and finishing at 1) contains 10 terms.
* Although it has not been proved yet (Collatz Problem), it is thought that all starting numbers finish at 1.
* Which starting number, under one million, produces the longest chain?
* NOTE: Once the chain starts the terms are allowed to go above one million.
*/
public class LongestCollatzSequence2 {
ArrayList<Long> results = null;
ArrayList<Long> temp = null;
public LongestCollatzSequence2(){}
private void compute(long range){
int size = -2;
for(long i = 0; i<= range; i++){
temp = new ArrayList<Long>();
temp.add(i);
this.iterative(i);
// System.out.println(temp+" "+temp.size());
if(temp.size()>size){
results = new ArrayList<Long>(temp);
size = temp.size();
}
}
System.out.println("final results "+results);
}
private void iterative(long positive){
long input = positive;
if(isEven(positive)){
input=positive/2;
}else {
input = positive*3+1;
}
temp.add(input);
if(input>1){
// System.out.println(input);
this.iterative(input);
}
}
private boolean isEven(long positive){
if(positive%2==0){
return true;
}
else return false;
}
/**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
LongestCollatzSequence2 longestCollatzSequence = new LongestCollatzSequence2();
longestCollatzSequence.compute(1000000);
}
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
/*
* The following iterative sequence is defined for the set of positive integers:
* n → n/2 (n is even)
* n → 3n + 1 (n is odd)
* Using the rule above and starting with 13, we generate the following sequence:
* 13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1
* It can be seen that this sequence (starting at 13 and finishing at 1) contains 10 terms.
* Although it has not been proved yet (Collatz Problem), it is thought that all starting numbers finish at 1.
* Which starting number, under one million, produces the longest chain?
* NOTE: Once the chain starts the terms are allowed to go above one million.
*/
public class LongestCollatzSequence2 {
ArrayList<Long> results = null;
ArrayList<Long> temp = null;
public LongestCollatzSequence2(){}
private void compute(long range){
int size = -2;
for(long i = 0; i<= range; i++){
temp = new ArrayList<Long>();
temp.add(i);
this.iterative(i);
// System.out.println(temp+" "+temp.size());
if(temp.size()>size){
results = new ArrayList<Long>(temp);
size = temp.size();
}
}
System.out.println("final results "+results);
}
private void iterative(long positive){
long input = positive;
if(isEven(positive)){
input=positive/2;
}else {
input = positive*3+1;
}
temp.add(input);
if(input>1){
// System.out.println(input);
this.iterative(input);
}
}
private boolean isEven(long positive){
if(positive%2==0){
return true;
}
else return false;
}
/**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
LongestCollatzSequence2 longestCollatzSequence = new LongestCollatzSequence2();
longestCollatzSequence.compute(1000000);
}
}