
机器学习之Keras
机器学习之Keras
H3rmesk1t
记录一下平时遇到的问题和学习的东西
展开
-
VGG+SegNet模型
搭建模型结构代码from tensorflow.keras import layersfrom tensorflow.keras import modelsdef VggSegNet(input_shape, num_classes): # 输入图片的尺寸 inputs = layers.Input(shape=input_shape) # 512,512,3 -> 512,512,64 conv_1 = layers.Conv2D(filters=原创 2021-04-07 22:36:44 · 407 阅读 · 1 评论 -
Unet模型
搭建模型结构代码import numpy as npfrom tensorflow.keras import layersfrom tensorflow.keras import modelsdef Unet(input_shape=(512,512,3), num_classes=21): # 输入图片的尺寸 inputs = layers.Input(input_shape) # 512,512,3 -> 512,512,64 conv1 = l原创 2021-04-07 21:34:29 · 489 阅读 · 0 评论 -
VGG19+Unet模型
搭建模型结构代码import numpy as npfrom tensorflow.keras import layersfrom tensorflow.keras import modelsdef VGG19(img_input): # 512,512,3 -> 512,512,64 x = layers.Conv2D(filters=64, kernel_size=(3,3), strides=(1,1), activation='relu', padding='same原创 2021-04-07 16:59:41 · 1351 阅读 · 0 评论 -
ResNet+Unet模型
搭建模型结构代码from tensorflow.keras import layersfrom tensorflow.keras import modelsdef ResNet(image_input, is_training=True): dropout_rate = 0.5 if is_training else 1.0 # (512,512,3) -> (512,512,64) y = layers.Conv2D(64, kernel_size=4,原创 2021-04-07 16:57:22 · 5621 阅读 · 3 评论 -
循环神经网络小案例----小蜜蜂乐谱预测
案例模型Model: "sequential"_________________________________________________________________Layer (type) Output Shape Param # =================================================================lstm (LSTM) (1,原创 2021-03-11 22:56:54 · 210 阅读 · 0 评论 -
卷积神经网络模型小案例--多分类识别圆形、三角形、四边形
案例模型Model: "sequential"_________________________________________________________________Layer (type) Output Shape Param # =================================================================conv2d (Conv2D) (No原创 2021-03-10 22:21:18 · 1471 阅读 · 0 评论 -
pima-indians-diabetes
搭建模型Model: "sequential"_________________________________________________________________Layer (type) Output Shape Param # =================================================================dense (Dense) (Non原创 2021-03-09 21:00:53 · 507 阅读 · 0 评论